Answer :
Let’s go through each part of the problem step-by-step.
### Part (i) [tex]\(\frac{18}{25}\)[/tex] ÷ [tex]\(\frac{3}{50}\)[/tex]
To divide fractions, we multiply the first fraction by the reciprocal of the second fraction.
1. Write the reciprocal of [tex]\(\frac{3}{50}\)[/tex], which is [tex]\(\frac{50}{3}\)[/tex].
2. Multiply [tex]\(\frac{18}{25}\)[/tex] by [tex]\(\frac{50}{3}\)[/tex]:
[tex]\[ \frac{18}{25} \times \frac{50}{3} = \frac{18 \times 50}{25 \times 3} = \frac{900}{75} = 12 \][/tex]
So, [tex]\(\frac{18}{25} \div \frac{3}{50} = 12\)[/tex].
### Part (ii) [tex]\(\frac{15}{27}\)[/tex] ÷ 5
To divide a fraction by a whole number, you can multiply the fraction by the reciprocal of the whole number.
1. Write the reciprocal of 5, which is [tex]\(\frac{1}{5}\)[/tex].
2. Multiply [tex]\(\frac{15}{27}\)[/tex] by [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \frac{15}{27} \times \frac{1}{5} = \frac{15}{27 \times 5} = \frac{15}{135} = \frac{1}{9} \approx 0.1111 \][/tex]
So, [tex]\(\frac{15}{27} \div 5 = \frac{1}{9} \approx 0.1111\)[/tex].
### Part (iii) [tex]\(\frac{49}{6}\)[/tex] ÷ 7
For dividing a fraction by a whole number, you can multiply by the reciprocal of the whole number.
1. Write the reciprocal of 7, which is [tex]\(\frac{1}{7}\)[/tex].
2. Multiply [tex]\(\frac{49}{6}\)[/tex] by [tex]\(\frac{1}{7}\)[/tex]:
[tex]\[ \frac{49}{6} \times \frac{1}{7} = \frac{49}{6 \times 7} = \frac{49}{42} \approx 1.1667 \][/tex]
So, [tex]\(\frac{49}{6} \div 7 = \frac{49}{42} \approx 1.1667\)[/tex].
### Part (iv) 24 ÷ [tex]\(\frac{8}{3}\)[/tex]
To divide a whole number by a fraction, you multiply the whole number by the reciprocal of the fraction.
1. Write the reciprocal of [tex]\(\frac{8}{3}\)[/tex], which is [tex]\(\frac{3}{8}\)[/tex].
2. Multiply 24 by [tex]\(\frac{3}{8}\)[/tex]:
[tex]\[ 24 \times \frac{3}{8} = \frac{24 \times 3}{8} = \frac{72}{8} = 9 \][/tex]
So, [tex]\(24 \div \frac{8}{3} = 9\)[/tex].
### Summary
[tex]\[ \begin{align*} (i) & \quad \frac{18}{25} \div \frac{3}{50} = 12 \\ (ii) & \quad \frac{15}{27} \div 5 = \frac{1}{9} \approx 0.1111 \\ (iii) & \quad \frac{49}{6} \div 7 = \frac{49}{42} \approx 1.1667 \\ (iv) & \quad 24 \div \frac{8}{3} = 9 \\ \end{align*} \][/tex]
### Part (i) [tex]\(\frac{18}{25}\)[/tex] ÷ [tex]\(\frac{3}{50}\)[/tex]
To divide fractions, we multiply the first fraction by the reciprocal of the second fraction.
1. Write the reciprocal of [tex]\(\frac{3}{50}\)[/tex], which is [tex]\(\frac{50}{3}\)[/tex].
2. Multiply [tex]\(\frac{18}{25}\)[/tex] by [tex]\(\frac{50}{3}\)[/tex]:
[tex]\[ \frac{18}{25} \times \frac{50}{3} = \frac{18 \times 50}{25 \times 3} = \frac{900}{75} = 12 \][/tex]
So, [tex]\(\frac{18}{25} \div \frac{3}{50} = 12\)[/tex].
### Part (ii) [tex]\(\frac{15}{27}\)[/tex] ÷ 5
To divide a fraction by a whole number, you can multiply the fraction by the reciprocal of the whole number.
1. Write the reciprocal of 5, which is [tex]\(\frac{1}{5}\)[/tex].
2. Multiply [tex]\(\frac{15}{27}\)[/tex] by [tex]\(\frac{1}{5}\)[/tex]:
[tex]\[ \frac{15}{27} \times \frac{1}{5} = \frac{15}{27 \times 5} = \frac{15}{135} = \frac{1}{9} \approx 0.1111 \][/tex]
So, [tex]\(\frac{15}{27} \div 5 = \frac{1}{9} \approx 0.1111\)[/tex].
### Part (iii) [tex]\(\frac{49}{6}\)[/tex] ÷ 7
For dividing a fraction by a whole number, you can multiply by the reciprocal of the whole number.
1. Write the reciprocal of 7, which is [tex]\(\frac{1}{7}\)[/tex].
2. Multiply [tex]\(\frac{49}{6}\)[/tex] by [tex]\(\frac{1}{7}\)[/tex]:
[tex]\[ \frac{49}{6} \times \frac{1}{7} = \frac{49}{6 \times 7} = \frac{49}{42} \approx 1.1667 \][/tex]
So, [tex]\(\frac{49}{6} \div 7 = \frac{49}{42} \approx 1.1667\)[/tex].
### Part (iv) 24 ÷ [tex]\(\frac{8}{3}\)[/tex]
To divide a whole number by a fraction, you multiply the whole number by the reciprocal of the fraction.
1. Write the reciprocal of [tex]\(\frac{8}{3}\)[/tex], which is [tex]\(\frac{3}{8}\)[/tex].
2. Multiply 24 by [tex]\(\frac{3}{8}\)[/tex]:
[tex]\[ 24 \times \frac{3}{8} = \frac{24 \times 3}{8} = \frac{72}{8} = 9 \][/tex]
So, [tex]\(24 \div \frac{8}{3} = 9\)[/tex].
### Summary
[tex]\[ \begin{align*} (i) & \quad \frac{18}{25} \div \frac{3}{50} = 12 \\ (ii) & \quad \frac{15}{27} \div 5 = \frac{1}{9} \approx 0.1111 \\ (iii) & \quad \frac{49}{6} \div 7 = \frac{49}{42} \approx 1.1667 \\ (iv) & \quad 24 \div \frac{8}{3} = 9 \\ \end{align*} \][/tex]