\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Liquid } & \multicolumn{1}{c|}{ Volume Used } & Mass & \multicolumn{1}{c|}{ Density } \\
\hline corn syrup & [tex]$95 \, \text{cm}^3$[/tex] & 130.15 g & [tex]$1.37 \, \text{g/cm}^3$[/tex] \\
\hline water & [tex]$90 \, \text{cm}^3$[/tex] & 90.00 g & [tex]$1 \, \text{g/cm}^3$[/tex] \\
\hline vegetable oil & [tex]$85 \, \text{cm}^3$[/tex] & 77.35 g & [tex]$0.91 \, \text{g/cm}^3$[/tex] \\
\hline rubbing alcohol & [tex]$105 \, \text{cm}^3$[/tex] & 81.90 g & [tex]$0.78 \, \text{g/cm}^3$[/tex] \\
\hline
\end{tabular}



Answer :

Let's analyze the given data systematically:

We have a table consisting of four different liquids: corn syrup, water, vegetable oil, and rubbing alcohol. Each liquid has data provided for volume used, mass, and density. Here is the table organized for clarity:

[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Liquid} & \text{Volume Used} \, (cm^3) & \text{Mass} \, (g) & \text{Density} \, (g/cm^3) \\ \hline \text{corn syrup} & 95 & 130.15 & 1.37 \\ \hline \text{water} & 90 & 90.00 & 1 \\ \hline \text{vegetable oil} & 85 & 77.35 & 0.91 \\ \hline \text{rubbing alcohol} & 105 & 81.90 & 0.78 \\ \hline \end{array} \][/tex]

By examining this table, we can gather the following individual lists for each property:

1. Volumes Used:

[tex]\[ \text{Volumes} = [95 \, cm^3, 90 \, cm^3, 85 \, cm^3, 105 \, cm^3] \][/tex]

2. Masses:

[tex]\[ \text{Masses} = [130.15 \, g, 90.00 \, g, 77.35 \, g, 81.90 \, g] \][/tex]

3. Densities:

[tex]\[ \text{Densities} = [1.37 \, g/cm^3, 1 \, g/cm^3, 0.91 \, g/cm^3, 0.78 \, g/cm^3] \][/tex]

So, compiling these respective lists, we get:

- List of Volumes Used:
[tex]\[ [95, 90, 85, 105] \][/tex]

- List of Masses:
[tex]\[ [130.15, 90.0, 77.35, 81.9] \][/tex]

- List of Densities:
[tex]\[ [1.37, 1, 0.91, 0.78] \][/tex]

These lists concisely represent the relevant property values of the liquids as organized in the provided table.