\begin{tabular}{|c|c|c|}
\hline
Red fabric (yd), [tex]$x$[/tex] & Blue fabric (yd), [tex]$y$[/tex] & \begin{tabular}{l}
Sophie is buying fabric to make items for a craft fair. \\
The table shows some combinations of how much of \\
each color fabric she might buy. Which equations \\
model the total yards of fabric Sophie will buy? Check \\
all that apply.
\end{tabular} \\
\hline
1 & 27 & [tex]$x + y = 28$[/tex] \\
\hline
2 & 26 & \begin{tabular}{l}
[tex]$28 + x = y$[/tex] \\
[tex]$x - y = 28$[/tex]
\end{tabular} \\
\hline
3 & 25 & [tex]$28 - x = y$[/tex] \\
\hline
4 & 24 & \\
\hline
\end{tabular}



Answer :

To determine which equations model the total yards of fabric Sophie will buy, let’s analyze each combination of red fabric ([tex]\(x\)[/tex]) and blue fabric ([tex]\(y\)[/tex]) provided in the table.

1. For the combination (1, 27):
[tex]\[ x + y = 1 + 27 = 28 \][/tex]
This equation holds true. So, [tex]\(x + y = 28\)[/tex] is a valid equation.

2. For the combination (2, 26):
- Checking [tex]\(28 + x = y\)[/tex]:
[tex]\[ 28 + 2 = 30 \neq 26 \][/tex]
This equation is not valid.
- Checking [tex]\(x - y = 28\)[/tex]:
[tex]\[ 2 - 26 = -24 \neq 28 \][/tex]
This equation is not valid.

3. For the combination (3, 25):
- Checking [tex]\(28 - x = y\)[/tex]:
[tex]\[ 28 - 3 = 25 \][/tex]
This equation holds true.

4. For the combination (4, 24):
[tex]\[ x + y = 4 + 24 = 28 \][/tex]
This equation holds true. So, [tex]\(x + y = 28\)[/tex] is a valid equation again.

Based on the analysis, the valid equations that model the total yards of fabric Sophie will buy are:

- [tex]\(x + y = 28\)[/tex]
- [tex]\(28 - x = y\)[/tex]