You have an unverified email address. Please open settings to verify your communication details.

---

Post-Test
Physical Science - Semester II - Doral (Summer 2024) / Semester Exam

16. If you have a parallel circuit with a battery (4 ohms), a light bulb (2 ohms), and a fan (3 ohms), how would you find the total resistance [tex]\(R\)[/tex]?

A. [tex]\(\frac{1}{R} = 4 + \frac{1}{2} + \frac{1}{3}\)[/tex]

B. [tex]\(R = \frac{1}{4} + \frac{1}{2} + \frac{1}{3}\)[/tex]

C. [tex]\(\frac{1}{R} = \frac{1}{4} + \frac{1}{2} + \frac{1}{3}\)[/tex]

D. [tex]\(R = 4 + 2 + 3\)[/tex]



Answer :

To find the total resistance [tex]\( R \)[/tex] in a parallel circuit with resistances [tex]\( R_1 \)[/tex], [tex]\( R_2 \)[/tex], and [tex]\( R_3 \)[/tex], you use the formula:

[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \][/tex]

Given the resistances:

- The battery has a resistance [tex]\( R_1 = 4 \)[/tex] ohms
- The light bulb has a resistance [tex]\( R_2 = 2 \)[/tex] ohms
- The fan has a resistance [tex]\( R_3 = 3 \)[/tex] ohms

Substitute these values into the formula:

[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{4} + \frac{1}{2} + \frac{1}{3} \][/tex]

To find [tex]\( \frac{1}{R_{\text{total}}} \)[/tex]:

1. Calculate [tex]\( \frac{1}{4} \)[/tex]:
[tex]\[ \frac{1}{4} = 0.25 \][/tex]

2. Calculate [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]

3. Calculate [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ \frac{1}{3} \approx 0.333 \][/tex]

Now add these values together:
[tex]\[ 0.25 + 0.5 + 0.333 = 1.083333... \][/tex]

Therefore,
[tex]\[ \frac{1}{R_{\text{total}}} \approx 1.083333... \][/tex]

To find [tex]\( R_{\text{total}} \)[/tex], take the reciprocal of [tex]\( 1.083333 \)[/tex]:
[tex]\[ R_{\text{total}} = \frac{1}{1.083333...} \approx 0.923 \text{ ohms} \][/tex]

So, the total resistance in the parallel circuit is approximately [tex]\( 0.923 \)[/tex] ohms. The reciprocal total resistance is expressed as [tex]\( 1.083333 \)[/tex]. The answer consistent with this solution and numerical result:

[tex]\[ \frac{1}{R} = \frac{1}{4} + \frac{1}{2} + \frac{1}{3} \][/tex]

Thus, the correct answer option is:
[tex]\[ \frac{1}{R} = \frac{1}{4} + \frac{1}{2} + \frac{1}{3} \][/tex]