Answer :
Sure, let's find the mean, median, and mode for the given data step-by-step.
### Given Data:
[tex]\[ \begin{array}{|c|c|} \hline x & f \\ \hline 12 & 4 \\ \hline 18 & 5 \\ \hline 21 & 5 \\ \hline 24 & 6 \\ \hline 25 & 8 \\ \hline 29 & 2 \\ \hline 30 & 1 \\ \hline \end{array} \][/tex]
### 1. Finding the Mean:
The mean is calculated using the formula:
[tex]\[ \text{Mean} = \frac{\sum (x \cdot f)}{\sum f} \][/tex]
First, we calculate [tex]\(\sum (x \cdot f)\)[/tex]:
[tex]\[ \begin{align*} 12 \cdot 4 & = 48 \\ 18 \cdot 5 & = 90 \\ 21 \cdot 5 & = 105 \\ 24 \cdot 6 & = 144 \\ 25 \cdot 8 & = 200 \\ 29 \cdot 2 & = 58 \\ 30 \cdot 1 & = 30 \\ \end{align*} \][/tex]
Summing these products:
[tex]\[ 48 + 90 + 105 + 144 + 200 + 58 + 30 = 675 \][/tex]
Next, we calculate [tex]\(\sum f\)[/tex]:
[tex]\[ 4 + 5 + 5 + 6 + 8 + 2 + 1 = 31 \][/tex]
Finally, we find the mean:
[tex]\[ \text{Mean} = \frac{675}{31} \approx 21.774 \][/tex]
### 2. Finding the Median:
To find the median, we need to determine the cumulative frequency and find where the middle value lies. The cumulative frequency ([tex]\(cf\)[/tex]) is calculated by summing the frequencies up to each point.
[tex]\[ \begin{array}{|c|c|c|} \hline x & f & cf \\ \hline 12 & 4 & 4 \\ \hline 18 & 5 & 9 \\ \hline 21 & 5 & 14 \\ \hline 24 & 6 & 20 \\ \hline 25 & 8 & 28 \\ \hline 29 & 2 & 30 \\ \hline 30 & 1 & 31 \\ \hline \end{array} \][/tex]
Since the total frequency [tex]\(\sum f = 31\)[/tex] is an odd number, the median will be the value corresponding to the middle cumulative frequency. The middle position is given by:
[tex]\[ \frac{31 + 1}{2} = 16 \][/tex]
We locate the 16th term in the cumulative frequency column, which falls in the class where [tex]\(x = 24\)[/tex].
So, the median is [tex]\(24\)[/tex].
### 3. Finding the Mode:
The mode is the value of [tex]\(x\)[/tex] that has the highest frequency [tex]\(f\)[/tex].
From the data:
[tex]\[ \begin{array}{|c|c|} \hline x & f \\ \hline 12 & 4 \\ \hline 18 & 5 \\ \hline 21 & 5 \\ \hline 24 & 6 \\ \hline 25 & 8 \\ \hline 29 & 2 \\ \hline 30 & 1 \\ \hline \end{array} \][/tex]
The highest frequency is [tex]\(8\)[/tex], which corresponds to [tex]\(x = 25\)[/tex].
So, the mode is [tex]\(25\)[/tex].
### Summary of Results:
[tex]\[ \begin{align*} \text{Mean} &\approx 21.774 \\ \text{Median} &= 24 \\ \text{Mode} &= 25 \\ \end{align*} \][/tex]
### Given Data:
[tex]\[ \begin{array}{|c|c|} \hline x & f \\ \hline 12 & 4 \\ \hline 18 & 5 \\ \hline 21 & 5 \\ \hline 24 & 6 \\ \hline 25 & 8 \\ \hline 29 & 2 \\ \hline 30 & 1 \\ \hline \end{array} \][/tex]
### 1. Finding the Mean:
The mean is calculated using the formula:
[tex]\[ \text{Mean} = \frac{\sum (x \cdot f)}{\sum f} \][/tex]
First, we calculate [tex]\(\sum (x \cdot f)\)[/tex]:
[tex]\[ \begin{align*} 12 \cdot 4 & = 48 \\ 18 \cdot 5 & = 90 \\ 21 \cdot 5 & = 105 \\ 24 \cdot 6 & = 144 \\ 25 \cdot 8 & = 200 \\ 29 \cdot 2 & = 58 \\ 30 \cdot 1 & = 30 \\ \end{align*} \][/tex]
Summing these products:
[tex]\[ 48 + 90 + 105 + 144 + 200 + 58 + 30 = 675 \][/tex]
Next, we calculate [tex]\(\sum f\)[/tex]:
[tex]\[ 4 + 5 + 5 + 6 + 8 + 2 + 1 = 31 \][/tex]
Finally, we find the mean:
[tex]\[ \text{Mean} = \frac{675}{31} \approx 21.774 \][/tex]
### 2. Finding the Median:
To find the median, we need to determine the cumulative frequency and find where the middle value lies. The cumulative frequency ([tex]\(cf\)[/tex]) is calculated by summing the frequencies up to each point.
[tex]\[ \begin{array}{|c|c|c|} \hline x & f & cf \\ \hline 12 & 4 & 4 \\ \hline 18 & 5 & 9 \\ \hline 21 & 5 & 14 \\ \hline 24 & 6 & 20 \\ \hline 25 & 8 & 28 \\ \hline 29 & 2 & 30 \\ \hline 30 & 1 & 31 \\ \hline \end{array} \][/tex]
Since the total frequency [tex]\(\sum f = 31\)[/tex] is an odd number, the median will be the value corresponding to the middle cumulative frequency. The middle position is given by:
[tex]\[ \frac{31 + 1}{2} = 16 \][/tex]
We locate the 16th term in the cumulative frequency column, which falls in the class where [tex]\(x = 24\)[/tex].
So, the median is [tex]\(24\)[/tex].
### 3. Finding the Mode:
The mode is the value of [tex]\(x\)[/tex] that has the highest frequency [tex]\(f\)[/tex].
From the data:
[tex]\[ \begin{array}{|c|c|} \hline x & f \\ \hline 12 & 4 \\ \hline 18 & 5 \\ \hline 21 & 5 \\ \hline 24 & 6 \\ \hline 25 & 8 \\ \hline 29 & 2 \\ \hline 30 & 1 \\ \hline \end{array} \][/tex]
The highest frequency is [tex]\(8\)[/tex], which corresponds to [tex]\(x = 25\)[/tex].
So, the mode is [tex]\(25\)[/tex].
### Summary of Results:
[tex]\[ \begin{align*} \text{Mean} &\approx 21.774 \\ \text{Median} &= 24 \\ \text{Mode} &= 25 \\ \end{align*} \][/tex]