Answer :

To evaluate the expression [tex]\(8r - rs\)[/tex] when [tex]\(r = 6\)[/tex] and [tex]\(s = 5\)[/tex], follow these steps:

1. Substitute the values of [tex]\(r\)[/tex] and [tex]\(s\)[/tex] into the expression:
The given expression is [tex]\(8r - rs\)[/tex]. We substitute [tex]\(r = 6\)[/tex] and [tex]\(s = 5\)[/tex] into this expression.

2. Calculate [tex]\(8r\)[/tex]:
Substitute [tex]\(r = 6\)[/tex] into the term [tex]\(8r\)[/tex]:
[tex]\[ 8r = 8 \times 6 \][/tex]
Performing the multiplication gives:
[tex]\[ 8 \times 6 = 48 \][/tex]

3. Calculate [tex]\(rs\)[/tex]:
Substitute [tex]\(r = 6\)[/tex] and [tex]\(s = 5\)[/tex] into the term [tex]\(rs\)[/tex]:
[tex]\[ rs = 6 \times 5 \][/tex]
Performing the multiplication gives:
[tex]\[ 6 \times 5 = 30 \][/tex]

4. Subtract the result of [tex]\(rs\)[/tex] from [tex]\(8r\)[/tex]:
Now, we subtract [tex]\(rs\)[/tex] from [tex]\(8r\)[/tex]:
[tex]\[ 8r - rs = 48 - 30 \][/tex]
Performing the subtraction gives:
[tex]\[ 48 - 30 = 18 \][/tex]

Thus, the value of the expression [tex]\(8r - rs\)[/tex] when [tex]\(r = 6\)[/tex] and [tex]\(s = 5\)[/tex] is [tex]\(18\)[/tex].