Jillian is selling boxes of cookies to raise money for her basketball team. The 10 oz. box costs [tex]\$3.50[/tex], while the 16 oz. box costs [tex]\$5.00[/tex]. At the end of one week, she collected [tex]\$97.50[/tex], selling a total of 24 boxes. The system of equations that models her sales is below.

[tex]\[
\begin{array}{l}
x + y = 24 \\
3.50x + 5.00y = 97.50
\end{array}
\][/tex]

Solve the system of equations. How many 10 oz. boxes were sold?

A. 6
B. 9
C. 12
D. 15



Answer :

To solve the given problem, we need to analyze the system of equations provided:

1. [tex]\( x + y = 24 \)[/tex]
2. [tex]\( 3.50x + 5.00y = 97.50 \)[/tex]

Here, [tex]\( x \)[/tex] represents the number of 10 oz. boxes sold, and [tex]\( y \)[/tex] represents the number of 16 oz. boxes sold.

### Step-by-Step Solution:

1. Equation (1): [tex]\( x + y = 24 \)[/tex]

From this equation, we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = 24 - x \][/tex]

2. Equation (2): [tex]\( 3.50x + 5.00y = 97.50 \)[/tex]

Substitute the expression for [tex]\( y \)[/tex] from Equation (1) into Equation (2):
[tex]\[ 3.50x + 5.00(24 - x) = 97.50 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 3.50x + 120 - 5.00x = 97.50 \][/tex]

Combine like terms:
[tex]\[ 3.50x - 5.00x + 120 = 97.50 \][/tex]
[tex]\[ -1.50x + 120 = 97.50 \][/tex]

Isolate [tex]\( x \)[/tex]:
[tex]\[ -1.50x = 97.50 - 120 \][/tex]
[tex]\[ -1.50x = -22.50 \][/tex]

Divide by -1.50:
[tex]\[ x = \frac{-22.50}{-1.50} = 15 \][/tex]

Thus, [tex]\( x = 15 \)[/tex].

4. Solve for [tex]\( y \)[/tex]:
Using the first equation [tex]\( y = 24 - x \)[/tex]:
[tex]\[ y = 24 - 15 \][/tex]
[tex]\[ y = 9 \][/tex]

Therefore, Jillian sold:
- [tex]\( x = 15 \)[/tex] 10 oz. boxes
- [tex]\( y = 9 \)[/tex] 16 oz. boxes

Hence, the number of 10 oz. boxes sold is [tex]\( 15 \)[/tex]. Therefore, the correct answer is:

15