To determine the volume of a cube, we use the formula:
[tex]\[ V = a^3 \][/tex]
where [tex]\( V \)[/tex] represents the volume of the cube, and [tex]\( a \)[/tex] is the length of one of its edges. In this case, the edge length [tex]\( a \)[/tex] is given as 7 cm.
We need to raise the edge length to the power of three:
[tex]\[ V = 7^3 \][/tex]
Calculating [tex]\( 7^3 \)[/tex]:
[tex]\[ 7^3 = 7 \times 7 \times 7 \][/tex]
First, multiply 7 by 7:
[tex]\[ 7 \times 7 = 49 \][/tex]
Next, multiply the result by 7 again:
[tex]\[ 49 \times 7 = 343 \][/tex]
Therefore, the volume of the cube is:
[tex]\[ 343 \, \text{cm}^3 \][/tex]
Thus, the correct answer is:
D [tex]\( \quad 343 \, \text{cm}^3 \)[/tex]