What is the volume of a cube with edge lengths of 7 cm?

A. [tex]84 \, \text{cm}^3[/tex]
B. [tex]147 \, \text{cm}^3[/tex]
C. [tex]294 \, \text{cm}^3[/tex]
D. [tex]343 \, \text{cm}^3[/tex]



Answer :

To determine the volume of a cube, we use the formula:

[tex]\[ V = a^3 \][/tex]

where [tex]\( V \)[/tex] represents the volume of the cube, and [tex]\( a \)[/tex] is the length of one of its edges. In this case, the edge length [tex]\( a \)[/tex] is given as 7 cm.

We need to raise the edge length to the power of three:

[tex]\[ V = 7^3 \][/tex]

Calculating [tex]\( 7^3 \)[/tex]:

[tex]\[ 7^3 = 7 \times 7 \times 7 \][/tex]

First, multiply 7 by 7:

[tex]\[ 7 \times 7 = 49 \][/tex]

Next, multiply the result by 7 again:

[tex]\[ 49 \times 7 = 343 \][/tex]

Therefore, the volume of the cube is:

[tex]\[ 343 \, \text{cm}^3 \][/tex]

Thus, the correct answer is:

D [tex]\( \quad 343 \, \text{cm}^3 \)[/tex]