Select the correct answer.

During the summer, Jody earns [tex]$\$[/tex]10[tex]$ per hour babysitting and $[/tex]\[tex]$15$[/tex] per hour doing yard work. This week she worked 34 hours and earned [tex]$\$[/tex]410[tex]$. If $[/tex]x[tex]$ represents the number of hours she babysat and $[/tex]y$ represents the number of hours she did yard work, which system of equations models this situation?

A.
[tex]\[
x + y = 34
\][/tex]
[tex]\[
10x + 15y = 410
\][/tex]

B.
[tex]\[
x + y = 410
\][/tex]
[tex]\[
10x + 15y = 34
\][/tex]

C.
[tex]\[
x + y = 34
\][/tex]
[tex]\[
15x + 10y = 410
\][/tex]

D.
[tex]\[
x + y = 410
\][/tex]
[tex]\[
15x + 10y = 34
\][/tex]



Answer :

To solve the problem, let's write the system of equations that models Jody's work situation.

1. Expressing the total hours worked:

Jody worked a total of 34 hours this week. If [tex]\( x \)[/tex] represents the number of hours she babysat and [tex]\( y \)[/tex] represents the number of hours she did yardwork, then the sum of these hours should equal 34. Hence, our first equation is:
[tex]\[ x + y = 34 \][/tex]

2. Expressing the total earnings:

Jody earns [tex]\(\$ 10\)[/tex] per hour for babysitting and [tex]\(\$ 15\)[/tex] per hour for yardwork. Given that her total earnings for the week are [tex]\(\$ 410\)[/tex], we can write this information as:
[tex]\[ 10x + 15y = 410 \][/tex]

Therefore, the system of equations that models this situation is:
[tex]\[ \begin{cases} x + y = 34 \\ 10x + 15y = 410 \end{cases} \][/tex]

Comparing this with the given options:

A. [tex]\( x + y = 34 \)[/tex]
[tex]\[ 10x + 15y = 410 \][/tex]

B. [tex]\( x + y = 410 \)[/tex]
[tex]\[ 10x + 15y = 34 \][/tex]

C. [tex]\( x + y = 34 \)[/tex]
[tex]\[ 15x + 10y = 410 \][/tex]

D.
[tex]\[ \begin{array}{l} x + y = 410 \\ 15x + 10y = 34 \end{array} \][/tex]

The correct system of equations is option A:
[tex]\[ \begin{cases} x + y = 34 \\ 10x + 15y = 410 \end{cases} \][/tex]

So, the answer is [tex]\( \boxed{A} \)[/tex].