To find the value of the expression [tex]\(3x^2 - 2y^3\)[/tex] when [tex]\(x = 2\)[/tex] and [tex]\(y = -1\)[/tex], follow these steps:
1. Substitute [tex]\(x = 2\)[/tex] into the expression:
[tex]\[3(2)^2 - 2y^3\][/tex]
2. Compute [tex]\( (2)^2 \)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]
3. Multiply the result by 3:
[tex]\[ 3 \times 4 = 12 \][/tex]
4. Substitute [tex]\( y = -1 \)[/tex] into the remaining part of the expression:
[tex]\[ 12 - 2(-1)^3 \][/tex]
5. Compute [tex]\( (-1)^3 \)[/tex]:
[tex]\[ -1 \][/tex]
6. Multiply the result by -2:
[tex]\[ -2 \times -1 = 2 \][/tex]
7. Subtract this value from the previous result:
[tex]\[ 12 - (-2) = 12 + 2 = 14 \][/tex]
Therefore, the value of the expression [tex]\(3x^2 - 2y^3\)[/tex] when [tex]\(x = 2\)[/tex] and [tex]\(y = -1\)[/tex] is 14.
The correct answer is B. 14