Answer :

To find [tex]\( f(B) \)[/tex] where [tex]\( f(x) = x^2 - 4x + 3 \)[/tex], we'll plug the matrix [tex]\( B \)[/tex] into the function. Let's go through the steps:

1. Define the Matrix [tex]\( B \)[/tex]:

[tex]\[ B = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 5 \\ 0 & -1 & 2 \end{bmatrix} \][/tex]

2. Calculate [tex]\( B^2 \)[/tex]:

To calculate [tex]\( B^2 \)[/tex], we multiply [tex]\( B \)[/tex] by itself:

[tex]\[ B \cdot B = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 5 \\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 5 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & -6 & 10 \\ -9 & 17 & -10 \\ -3 & 2 & -1 \end{bmatrix} \][/tex]

3. Calculate [tex]\( 4B \)[/tex]:

Multiply [tex]\( B \)[/tex] by 4:

[tex]\[ 4B = 4 \times \begin{bmatrix} 1 & 2 & 0 \\ 3 & -4 & 5 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 0 \\ 12 & -16 & 20 \\ 0 & -4 & 8 \end{bmatrix} \][/tex]

4. Calculate [tex]\( 3I \)[/tex]:

Multiply the 3x3 identity matrix [tex]\( I \)[/tex] by 3:

[tex]\[ 3I = 3 \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \][/tex]

5. Combine the Results to Find [tex]\( f(B) \)[/tex]:

Using the function [tex]\( f(x) = x^2 - 4x + 3 \)[/tex], we substitute the matrix [tex]\( B \)[/tex]:

[tex]\[ f(B) = B^2 - 4B + 3I \][/tex]

Substitute the matrices we calculated:

[tex]\[ f(B) = \begin{bmatrix} 7 & -6 & 10 \\ -9 & 17 & -10 \\ -3 & 2 & -1 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 0 \\ 12 & -16 & 20 \\ 0 & -4 & 8 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \][/tex]

Perform the matrix subtraction and addition:

[tex]\[ f(B) = \begin{bmatrix} 7 - 4 + 3 & -6 - 8 + 0 & 10 - 0 + 0 \\ -9 - 12 + 0 & 17 - (-16) + 3 & -10 - 20 + 0 \\ -3 - 0 + 0 & 2 - (-4) + 0 & -1 - 8 + 3 \end{bmatrix} = \begin{bmatrix} 6 & -14 & 10 \\ -21 & 36 & -30 \\ -3 & 6 & -6 \end{bmatrix} \][/tex]

Thus, the final result for [tex]\( f(B) \)[/tex] is:

[tex]\[ f(B) = \begin{bmatrix} 6 & -14 & 10 \\ -21 & 36 & -30 \\ -3 & 6 & -6 \end{bmatrix} \][/tex]