What is a simplified form of the expression [tex]\sin ^3 \theta + \frac{\sin \theta}{\sec ^2 \theta}[/tex]?

A. [tex]\csc \theta[/tex]
B. [tex]\sin \theta[/tex]
C. [tex]\sin \theta + \cos \theta[/tex]
D. [tex]2 \sin ^3 \theta[/tex]



Answer :

To simplify the given expression [tex]\(\sin^3 \theta + \frac{\sin \theta}{\sec^2 \theta}\)[/tex], we'll break it down step by step.

### Step 1: Understand the given expression

The given expression is:

[tex]\[ \sin^3 \theta + \frac{\sin \theta}{\sec^2 \theta} \][/tex]

### Step 2: Simplify [tex]\(\frac{\sin \theta}{\sec^2 \theta}\)[/tex]

Recall the trigonometric identities:

1. [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex]
2. [tex]\(\sec^2 \theta = \left(\frac{1}{\cos \theta}\right)^2 = \frac{1}{\cos^2 \theta}\)[/tex]

Using these, we can rewrite [tex]\(\sec^2 \theta\)[/tex]:

[tex]\[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]

Now, replace [tex]\(\sec^2 \theta\)[/tex] in the original expression:

[tex]\[ \frac{\sin \theta}{\sec^2 \theta} = \sin \theta \cdot \cos^2 \theta \][/tex]

So the expression now becomes:

[tex]\[ \sin^3 \theta + \sin \theta \cdot \cos^2 \theta \][/tex]

### Step 3: Factor out [tex]\(\sin \theta\)[/tex]

Notice that [tex]\(\sin \theta\)[/tex] is a common factor in both terms:

[tex]\[ \sin^3 \theta + \sin \theta \cdot \cos^2 \theta = \sin \theta (\sin^2 \theta + \cos^2 \theta) \][/tex]

### Step 4: Use the Pythagorean identity

Recall the Pythagorean identity in trigonometry:

[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]

Substitute this identity into the expression:

[tex]\[ \sin \theta (\sin^2 \theta + \cos^2 \theta) = \sin \theta \cdot 1 = \sin \theta \][/tex]

### Conclusion

The simplified form of the expression [tex]\(\sin^3 \theta + \frac{\sin \theta}{\sec^2 \theta}\)[/tex] is:

[tex]\[ \sin \theta \][/tex]

Thus, the answer is:

[tex]\(\sin \theta\)[/tex]