What is the value of the discriminant for the quadratic equation [tex]\[ -3 = -x^2 + 2x \][/tex]?

The discriminant is given by [tex]\[ b^2 - 4ac \][/tex].

A. -8
B. 4
C. 8
D. 16



Answer :

Let's solve for the value of the discriminant for the given quadratic equation [tex]\(-3 = -x^2 + 2x\)[/tex].

### Step-by-Step Solution:

1. Rewrite the equation in standard form:
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Starting from the given equation:
[tex]\[ -3 = -x^2 + 2x \][/tex]
Add 3 to both sides to move all terms to one side of the equation:
[tex]\[ 0 = -x^2 + 2x + 3 \][/tex]
Thus, the quadratic equation in standard form is:
[tex]\[ -x^2 + 2x + 3 = 0 \][/tex]

2. Identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
From the standard form equation [tex]\(-x^2 + 2x + 3 = 0\)[/tex], we can see that:
[tex]\[ a = -1, \quad b = 2, \quad c = 3 \][/tex]

3. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ \Delta = 2^2 - 4(-1)(3) \][/tex]

4. Simplify the expression:
[tex]\[ \Delta = 4 - (-12) \][/tex]
Simplifying further:
[tex]\[ \Delta = 4 + 12 \][/tex]
[tex]\[ \Delta = 16 \][/tex]

### Conclusion:
The value of the discriminant for the quadratic equation [tex]\(-3 = -x^2 + 2x\)[/tex] is
[tex]\[ \boxed{16} \][/tex]