Solve the system of equations:
[tex]\[
\begin{array}{l}
y = -3x + 6 \\
y = 2x - 4
\end{array}
\][/tex]

A. [tex]$(0, -4)$[/tex]
B. [tex]$(0.5, 0)$[/tex]
C. [tex]$(2, 0)$[/tex]
D. No solution



Answer :

To solve the given system of equations, we need to find the point [tex]\((x, y)\)[/tex] that satisfies both equations simultaneously. The given equations are:

[tex]\[ \begin{array}{l} y = -3x + 6 \\ y = 2x - 4 \end{array} \][/tex]

To find the solution, follow these steps:

1. Set the equations equal to each other because both expressions on the right-hand side are equal to [tex]\(y\)[/tex]. Therefore, we can write:
[tex]\[ -3x + 6 = 2x - 4 \][/tex]

2. Combine like terms to isolate [tex]\(x\)[/tex]. Move all [tex]\(x\)[/tex]-terms to one side of the equation and the constant terms to the other side:
[tex]\[ -3x + 6 = 2x - 4 \][/tex]
First, we subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ -3x - 2x + 6 = -4 \][/tex]
[tex]\[ -5x + 6 = -4 \][/tex]
Next, we subtract 6 from both sides:
[tex]\[ -5x = -4 - 6 \][/tex]
[tex]\[ -5x = -10 \][/tex]

3. Solve for [tex]\(x\)[/tex] by dividing both sides of the equation by [tex]\(-5\)[/tex]:
[tex]\[ x = \frac{-10}{-5} \][/tex]
[tex]\[ x = 2 \][/tex]

4. Substitute [tex]\(x\)[/tex] back into one of the original equations to find the value of [tex]\(y\)[/tex]. We'll use the first equation [tex]\(y = -3x + 6\)[/tex]:
[tex]\[ y = -3(2) + 6 \][/tex]
[tex]\[ y = -6 + 6 \][/tex]
[tex]\[ y = 0 \][/tex]

Thus, the solution to the system of equations is:
[tex]\[ \boxed{(2, 0)} \][/tex]