Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

The endpoints of [tex]\overline{AB}[/tex] are [tex]A (-7,-14)[/tex] and [tex]B (5,10)[/tex]. Into which ratio will each point divide [tex]\overline{AB}[/tex]?

- [tex]3:1[/tex]
- [tex]4:3[/tex]
- [tex]1:2[/tex]
- [tex]2:1[/tex]
- [tex]E(1,2)[/tex]
- [tex]D(2,4)[/tex]
- [tex]C(-3,-6)[/tex]



Answer :

To determine the ratios in which the points [tex]\(E(1, 2)\)[/tex], [tex]\(D(2, 4)\)[/tex], and [tex]\(C(-3, -6)\)[/tex] divide the line segment [tex]\(\overline{AB}\)[/tex] with endpoints [tex]\(A(-7, -14)\)[/tex] and [tex]\(B(5, 10)\)[/tex], we need to match each point with its respective dividing ratio. Based on given coordinates, the correct pairs are as follows:

- The point [tex]\(E(1, 2)\)[/tex] divides the segment [tex]\(\overline{AB}\)[/tex] in the ratio 1:1.
- The point [tex]\(D(2, 4)\)[/tex] divides the segment [tex]\(\overline{AB}\)[/tex] in the ratio 1:1.
- The point [tex]\(C(-3, -6)\)[/tex] divides the segment [tex]\(\overline{AB}\)[/tex] in the ratio 1:3.

Therefore, the correct pairs would be:

- [tex]$E(1, 2)$[/tex] ⟵⟶ [tex]$1:1$[/tex]
- [tex]$D(2, 4)$[/tex] ⟵⟶ [tex]$1:1$[/tex]
- [tex]$C(-3, -6)$[/tex] ⟵⟶ [tex]$1:3$[/tex]

The points [tex]\(E\)[/tex], [tex]\(D\)[/tex], and [tex]\(C\)[/tex] thus divide the line segment [tex]\(\overline{AB}\)[/tex] into the specified ratios respectively.