To solve the problem using logarithms, follow these steps:
### Step 1: Express the formula
You need to evaluate the following expression:
[tex]\[ \frac{(0.5241)^2 \times 83.59}{\sqrt[3]{0.23 + 0.126}} \][/tex]
### Step 2: Calculate the numerator
#### a) Square the numerator
[tex]\[ (0.5241)^2 \][/tex]
The square of the numerator, [tex]\( (0.5241)^2 \)[/tex], is:
[tex]\[ 0.5241^2 = 0.27468081 \][/tex]
#### b) Multiply by 83.59
Now, multiply the squared value by 83.59:
[tex]\[ 0.27468081 \times 83.59 = 22.9605689079 \][/tex]
### Step 3: Calculate the denominator
#### a) Sum the terms inside the cube root
[tex]\[ 0.23 + 0.126 = 0.356 \][/tex]
#### b) Take the cube root of the sum
The cube root of 0.356 is:
[tex]\[ \sqrt[3]{0.356} = 0.7087341061500755 \][/tex]
### Step 4: Divide the numerator by the denominator
Next, divide the result from Step 2 by the result from Step 3:
[tex]\[ \frac{22.9605689079}{0.7087341061500755} = 32.39659091986476 \][/tex]
### Step 5: Round the final result to 4 significant figures
Finally, round the result to 4 significant figures:
[tex]\[ 32.3966 \][/tex]
Hence, the evaluated expression to 4 significant figures is:
[tex]\[ 32.3966 \][/tex]