Value: 4

Solve the system of equations.

[tex]\[
\begin{array}{l}
y = -3x + 4 \\
-4x + y = -10
\end{array}
\][/tex]

a. [tex]\((-6, 22)\)[/tex]
b. [tex]\((1, 1)\)[/tex]
c. [tex]\((2, -2)\)[/tex]
d. No solution



Answer :

To solve the given system of equations:
[tex]\[ \begin{array}{l} y = -3x + 4 \\ -4x + y = -10 \end{array} \][/tex]

We will use the substitution method. Here’s the step-by-step solution:

1. Extract the first equation:
[tex]\[ y = -3x + 4 \][/tex]

2. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:
[tex]\[ -4x + y = -10 \][/tex]
Substituting [tex]\( y = -3x + 4 \)[/tex] into the second equation:
[tex]\[ -4x + (-3x + 4) = -10 \][/tex]
Simplify the equation:
[tex]\[ -4x - 3x + 4 = -10 \][/tex]
Combine like terms:
[tex]\[ -7x + 4 = -10 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -7x + 4 = -10 \][/tex]
Subtract 4 from both sides:
[tex]\[ -7x = -14 \][/tex]
Divide both sides by -7:
[tex]\[ x = 2 \][/tex]

4. Use the value of [tex]\( x \)[/tex] to find [tex]\( y \)[/tex]:
Substitute [tex]\( x = 2 \)[/tex] into the first equation [tex]\( y = -3x + 4 \)[/tex]:
[tex]\[ y = -3(2) + 4 \][/tex]
Simplify the calculation:
[tex]\[ y = -6 + 4 \][/tex]
[tex]\[ y = -2 \][/tex]

Hence, the solution to the system is [tex]\( (x, y) = (2, -2) \)[/tex].

Therefore, the correct answer is:
c. [tex]\((2, -2)\)[/tex]