Answer :
So, to find the number of students each type of vehicle will carry, we are given the system of equations:
[tex]\[ \begin{cases} 4v + 8b = 488 \\ v + 9b = 500 \end{cases} \][/tex]
We need to determine the values of [tex]\( v \)[/tex] and [tex]\( b \)[/tex]. Here is the step-by-step solution:
1. Solve the second equation for [tex]\( v \)[/tex]:
[tex]\[ v + 9b = 500 \][/tex]
[tex]\[ v = 500 - 9b \][/tex]
2. Substitute [tex]\( v = 500 - 9b \)[/tex] into the first equation:
[tex]\[ 4v + 8b = 488 \][/tex]
[tex]\[ 4(500 - 9b) + 8b = 488 \][/tex]
Simplify the expression:
[tex]\[ 2000 - 36b + 8b = 488 \][/tex]
Combine like terms:
[tex]\[ 2000 - 28b = 488 \][/tex]
3. Isolate the variable [tex]\( b \)[/tex]:
[tex]\[ 2000 - 488 = 28b \][/tex]
[tex]\[ 1512 = 28b \][/tex]
Divide both sides by 28:
[tex]\[ b = \frac{1512}{28} \][/tex]
[tex]\[ b = 54 \][/tex]
4. Substitute [tex]\( b = 54 \)[/tex] back into the equation [tex]\( v = 500 - 9b \)[/tex]:
[tex]\[ v = 500 - 9(54) \][/tex]
[tex]\[ v = 500 - 486 \][/tex]
[tex]\[ v = 14 \][/tex]
Therefore, the number of students each type of vehicle will carry is:
- [tex]\( v = 14 \)[/tex] students per van
- [tex]\( b = 54 \)[/tex] students per bus
So, the final answer is:
- Each van will carry 14 students.
- Each bus will carry 54 students.
[tex]\[ \begin{cases} 4v + 8b = 488 \\ v + 9b = 500 \end{cases} \][/tex]
We need to determine the values of [tex]\( v \)[/tex] and [tex]\( b \)[/tex]. Here is the step-by-step solution:
1. Solve the second equation for [tex]\( v \)[/tex]:
[tex]\[ v + 9b = 500 \][/tex]
[tex]\[ v = 500 - 9b \][/tex]
2. Substitute [tex]\( v = 500 - 9b \)[/tex] into the first equation:
[tex]\[ 4v + 8b = 488 \][/tex]
[tex]\[ 4(500 - 9b) + 8b = 488 \][/tex]
Simplify the expression:
[tex]\[ 2000 - 36b + 8b = 488 \][/tex]
Combine like terms:
[tex]\[ 2000 - 28b = 488 \][/tex]
3. Isolate the variable [tex]\( b \)[/tex]:
[tex]\[ 2000 - 488 = 28b \][/tex]
[tex]\[ 1512 = 28b \][/tex]
Divide both sides by 28:
[tex]\[ b = \frac{1512}{28} \][/tex]
[tex]\[ b = 54 \][/tex]
4. Substitute [tex]\( b = 54 \)[/tex] back into the equation [tex]\( v = 500 - 9b \)[/tex]:
[tex]\[ v = 500 - 9(54) \][/tex]
[tex]\[ v = 500 - 486 \][/tex]
[tex]\[ v = 14 \][/tex]
Therefore, the number of students each type of vehicle will carry is:
- [tex]\( v = 14 \)[/tex] students per van
- [tex]\( b = 54 \)[/tex] students per bus
So, the final answer is:
- Each van will carry 14 students.
- Each bus will carry 54 students.