Solve the system of equations.

[tex]\[
\begin{array}{l}
x = 3y + 1 \\
2x + 4y = 12
\end{array}
\][/tex]

A. [tex]\((4, 1)\)[/tex]
B. [tex]\((1, 4)\)[/tex]
C. [tex]\((3, 10)\)[/tex]
D. [tex]\((10, 3)\)[/tex]



Answer :

Sure! Let's solve the system of equations step-by-step.

Given:
[tex]\[ \begin{cases} x = 3y + 1 \quad \text{(Equation 1)}\\ 2x + 4y = 12 \quad \text{(Equation 2)} \end{cases} \][/tex]

First, from Equation 1, we have an expression for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ x = 3y + 1 \][/tex]

Next, we'll substitute this expression for [tex]\(x\)[/tex] into Equation 2. So wherever we see [tex]\(x\)[/tex] in Equation 2, we replace it with [tex]\(3y + 1\)[/tex]:
[tex]\[ 2(3y + 1) + 4y = 12 \][/tex]

Now, let's simplify and solve this equation for [tex]\(y\)[/tex]:
[tex]\[ 2(3y) + 2(1) + 4y = 12 \][/tex]
[tex]\[ 6y + 2 + 4y = 12 \][/tex]
[tex]\[ 10y + 2 = 12 \][/tex]

Subtract 2 from both sides to isolate terms involving [tex]\(y\)[/tex]:
[tex]\[ 10y = 10 \][/tex]

Divide both sides by 10 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 1 \][/tex]

Now that we have [tex]\(y = 1\)[/tex], we can substitute this value back into Equation 1 to find the corresponding [tex]\(x\)[/tex]:
[tex]\[ x = 3(1) + 1 \][/tex]
[tex]\[ x = 3 + 1 \][/tex]
[tex]\[ x = 4 \][/tex]

So, the solution to the system of equations is [tex]\((x, y) = (4, 1)\)[/tex].

Therefore, the correct answer is:
a. [tex]\((4, 1)\)[/tex]