Given the system of inequalities:

[tex]\[
\begin{array}{l}
4x - 5y \leq 1 \\
\frac{1}{2} y - x \leq 3
\end{array}
\][/tex]

Which shows the given inequalities in slope-intercept form?

A. [tex]\( y \leq \frac{4}{5} x - \frac{1}{5} \)[/tex]
B. [tex]\( y \leq 2x + 6 \)[/tex]
C. [tex]\( y \geq \frac{4}{5} x - \frac{1}{5} \)[/tex]
D. [tex]\( y \geq -\frac{4}{5} x + \frac{1}{5} \)[/tex]
E. [tex]\( y \leq 2x + 6 \)[/tex]
F. [tex]\( y \geq 2x + 6 \)[/tex]



Answer :

To convert the given system of inequalities to slope-intercept form ([tex]\(y = mx + b\)[/tex]), let's go through each inequality step-by-step:

1. First Inequality: [tex]\(4x - 5y \leq 1\)[/tex]

We need to solve this for [tex]\(y\)[/tex].

[tex]\[ 4x - 5y \leq 1 \][/tex]

Subtract [tex]\(4x\)[/tex] from both sides:

[tex]\[ -5y \leq -4x + 1 \][/tex]

Divide by [tex]\(-5\)[/tex], and remember to reverse the inequality since we are dividing by a negative number:

[tex]\[ y \geq \frac{4}{5}x - \frac{1}{5} \][/tex]

Thus, the first inequality in slope-intercept form is:

[tex]\[ y \geq \frac{4}{5}x - \frac{1}{5} \][/tex]

2. Second Inequality: [tex]\(\frac{1}{2}y - x \leq 3\)[/tex]

Again, solve this for [tex]\(y\)[/tex].

[tex]\[ \frac{1}{2}y - x \leq 3 \][/tex]

Add [tex]\(x\)[/tex] to both sides:

[tex]\[ \frac{1}{2}y \leq x + 3 \][/tex]

Multiply by [tex]\(2\)[/tex] to clear the fraction:

[tex]\[ y \leq 2x + 6 \][/tex]

Thus, the second inequality in slope-intercept form is:

[tex]\[ y \leq 2x + 6 \][/tex]

Now, compare these derived inequalities with the available choices:

- [tex]\(y \leq \frac{4}{5} x - \frac{1}{5}\)[/tex]
- [tex]\(y \leq 2 x + 6\)[/tex]
- [tex]\(y \geq \frac{4}{5} x - \frac{1}{5}\)[/tex]
- [tex]\(y \leq 2 x+ 6\)[/tex]
- [tex]\(y \geq-\frac{4}{5} x+\frac{1}{5}\)[/tex]
- [tex]\(y \geq 2 x + 6\)[/tex]

The inequalities from the choices that match our derived inequalities are:

- [tex]\(y \geq \frac{4}{5} x - \frac{1}{5}\)[/tex]
- [tex]\(y \leq 2 x + 6\)[/tex]

Therefore, the given inequalities in slope-intercept form are:

[tex]\[ y \geq \frac{4}{5} x - \frac{1}{5} \][/tex]
[tex]\[ y \leq 2 x + 6 \][/tex]