Which of the following is equivalent to the expression below?

[tex]\[ x - 4(3 - 2x) \][/tex]

A. [tex]\(-12 + 3x\)[/tex]

B. [tex]\(-12 - x\)[/tex]

C. [tex]\(-12 - 7x\)[/tex]

D. [tex]\(-12 + 9x\)[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\( x - 4(3 - 2x) \)[/tex], we'll simplify the expression step-by-step.

1. Start with the original expression:
[tex]\[ x - 4(3 - 2x) \][/tex]

2. Distribute the [tex]\(-4\)[/tex] across the terms inside the parentheses:
[tex]\[ x - 4 \cdot 3 + 4 \cdot 2x \][/tex]

3. Simplify the multiplication:
[tex]\[ x - 12 + 8x \][/tex]

4. Combine the like terms [tex]\(x\)[/tex] and [tex]\(8x\)[/tex]:
[tex]\[ x + 8x - 12 \][/tex]

[tex]\[ 9x - 12 \][/tex]

So, the simplified expression is [tex]\(9x - 12\)[/tex].

5. Let's check against the provided options to find the equivalent expression:

- [tex]\(-12 + 3x\)[/tex]
- [tex]\(-12 - x\)[/tex]
- [tex]\(-12 - 7x\)[/tex]
- [tex]\(-12 + 9x\)[/tex]

The simplified expression [tex]\( 9x - 12 \)[/tex] matches with the fourth option when we rearrange it in the same form:

[tex]\[ -12 + 9x \][/tex]

So, the correct choice is:

[tex]\[ \boxed{-12 + 9x} \][/tex]