Answer :
Certainly! Let's approach the problem step by step.
### 1. Type of Chemical Reaction
The reaction provided is:
[tex]\[ Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l) \][/tex]
This reaction is a double displacement reaction. In this type of reaction, the ions of the reacting compounds exchange places to form new compounds.
### 2. Grams of Calcium Chloride Formed
#### Step 1: Calculate the moles of Calcium Hydroxide ([tex]\(Ca(OH)_2\)[/tex])
Given:
- Mass of [tex]\(Ca(OH)_2\)[/tex] = 15 grams
- Molar mass of [tex]\(Ca(OH)_2\)[/tex] = 74.093 g/mol
We can calculate the moles of [tex]\(Ca(OH)_2\)[/tex]:
[tex]\[ \text{Moles of } Ca(OH)_2 = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{15 \text{ g}}{74.093 \text{ g/mol}} \][/tex]
After performing the calculation:
[tex]\[ \text{Moles of } Ca(OH)_2 \approx 0.202 \text{ moles} \][/tex]
#### Step 2: Determine moles of Calcium Chloride (CaCl[tex]\(_2\)[/tex]) formed
From the balanced equation, we see that 1 mole of [tex]\(Ca(OH)_2\)[/tex] produces 1 mole of [tex]\(CaCl_2\)[/tex]:
[tex]\[ \text{Moles of } CaCl_2 = \text{Moles of } Ca(OH)_2 \approx 0.202 \text{ moles} \][/tex]
#### Step 3: Calculate the mass of [tex]\( CaCl_2 \)[/tex]
Now, we need to convert the moles of [tex]\(CaCl_2\)[/tex] to grams. Given the molar mass of [tex]\(CaCl_2\)[/tex] = 110.98 g/mol:
[tex]\[ \text{Mass of } CaCl_2 = \text{Moles of } CaCl_2 \times \text{Molar Mass} \][/tex]
[tex]\[ \text{Mass of } CaCl_2 \approx 0.202 \text{ moles} \times 110.98 \text{ g/mol} \][/tex]
Performing the calculation:
[tex]\[ \text{Mass of } CaCl_2 \approx 22.47 \text{ grams} \][/tex]
### 3. Concentration of the HCl Solution
#### Step 1: Calculate the moles of HCl
Given:
- Mass of [tex]\( HCl \)[/tex] = 80 grams
- Molar mass of [tex]\( HCl \)[/tex] = 36.46 g/mol
We can calculate the moles of [tex]\( HCl \)[/tex]:
[tex]\[ \text{Moles of HCl} = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{80 \text{ g}}{36.46 \text{ g/mol}} \][/tex]
After performing the calculation:
[tex]\[ \text{Moles of HCl} \approx 2.194 \text{ moles} \][/tex]
#### Step 2: Calculate the concentration of the HCl solution
Given:
- Volume of the solution = 300 ml = 0.300 liters (since 1000 ml = 1 liter)
Concentration (Molarity) is defined as moles of solute per liter of solution:
[tex]\[ \text{Concentration of HCl} = \frac{\text{Moles of HCl}}{\text{Volume of solution in liters}} \][/tex]
[tex]\[ \text{Concentration of HCl} = \frac{2.194 \text{ moles}}{0.300 \text{ liters}} \][/tex]
After performing the calculation:
[tex]\[ \text{Concentration of HCl} \approx 7.31 \text{ Molar} \][/tex]
### Summary
- The type of chemical reaction is a double displacement reaction.
- When 15 grams of calcium hydroxide reacts, approximately 22.47 grams of calcium chloride is formed.
- The concentration of the HCl solution is approximately 7.31 M (molar).
### 1. Type of Chemical Reaction
The reaction provided is:
[tex]\[ Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l) \][/tex]
This reaction is a double displacement reaction. In this type of reaction, the ions of the reacting compounds exchange places to form new compounds.
### 2. Grams of Calcium Chloride Formed
#### Step 1: Calculate the moles of Calcium Hydroxide ([tex]\(Ca(OH)_2\)[/tex])
Given:
- Mass of [tex]\(Ca(OH)_2\)[/tex] = 15 grams
- Molar mass of [tex]\(Ca(OH)_2\)[/tex] = 74.093 g/mol
We can calculate the moles of [tex]\(Ca(OH)_2\)[/tex]:
[tex]\[ \text{Moles of } Ca(OH)_2 = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{15 \text{ g}}{74.093 \text{ g/mol}} \][/tex]
After performing the calculation:
[tex]\[ \text{Moles of } Ca(OH)_2 \approx 0.202 \text{ moles} \][/tex]
#### Step 2: Determine moles of Calcium Chloride (CaCl[tex]\(_2\)[/tex]) formed
From the balanced equation, we see that 1 mole of [tex]\(Ca(OH)_2\)[/tex] produces 1 mole of [tex]\(CaCl_2\)[/tex]:
[tex]\[ \text{Moles of } CaCl_2 = \text{Moles of } Ca(OH)_2 \approx 0.202 \text{ moles} \][/tex]
#### Step 3: Calculate the mass of [tex]\( CaCl_2 \)[/tex]
Now, we need to convert the moles of [tex]\(CaCl_2\)[/tex] to grams. Given the molar mass of [tex]\(CaCl_2\)[/tex] = 110.98 g/mol:
[tex]\[ \text{Mass of } CaCl_2 = \text{Moles of } CaCl_2 \times \text{Molar Mass} \][/tex]
[tex]\[ \text{Mass of } CaCl_2 \approx 0.202 \text{ moles} \times 110.98 \text{ g/mol} \][/tex]
Performing the calculation:
[tex]\[ \text{Mass of } CaCl_2 \approx 22.47 \text{ grams} \][/tex]
### 3. Concentration of the HCl Solution
#### Step 1: Calculate the moles of HCl
Given:
- Mass of [tex]\( HCl \)[/tex] = 80 grams
- Molar mass of [tex]\( HCl \)[/tex] = 36.46 g/mol
We can calculate the moles of [tex]\( HCl \)[/tex]:
[tex]\[ \text{Moles of HCl} = \frac{\text{Mass}}{\text{Molar Mass}} = \frac{80 \text{ g}}{36.46 \text{ g/mol}} \][/tex]
After performing the calculation:
[tex]\[ \text{Moles of HCl} \approx 2.194 \text{ moles} \][/tex]
#### Step 2: Calculate the concentration of the HCl solution
Given:
- Volume of the solution = 300 ml = 0.300 liters (since 1000 ml = 1 liter)
Concentration (Molarity) is defined as moles of solute per liter of solution:
[tex]\[ \text{Concentration of HCl} = \frac{\text{Moles of HCl}}{\text{Volume of solution in liters}} \][/tex]
[tex]\[ \text{Concentration of HCl} = \frac{2.194 \text{ moles}}{0.300 \text{ liters}} \][/tex]
After performing the calculation:
[tex]\[ \text{Concentration of HCl} \approx 7.31 \text{ Molar} \][/tex]
### Summary
- The type of chemical reaction is a double displacement reaction.
- When 15 grams of calcium hydroxide reacts, approximately 22.47 grams of calcium chloride is formed.
- The concentration of the HCl solution is approximately 7.31 M (molar).