Answer :

To solve the logarithmic equation [tex]$\log_{10}(x) = 5$[/tex], we need to find the value of [tex]\(x\)[/tex].

Step 1:
Recall the definition of a logarithm. The equation [tex]$\log_{10}(x) = 5$[/tex] means that 10 raised to the power of 5 equals [tex]\(x\)[/tex].

Step 2:
Express the equation in its exponential form:
[tex]\[ 10^5 = x \][/tex]

Step 3:
Calculate the value of [tex]\(10^5\)[/tex]:
[tex]\[ 10^5 \text{ means } 10 \times 10 \times 10 \times 10 \times 10 \][/tex]
[tex]\[ 10^5 = 100,000 \][/tex]

Thus, [tex]\(x\)[/tex] equals to 100,000.

Therefore, the correct answer is:
[tex]\[ \boxed{100,000} \][/tex]