Solve [tex]$9^{x+4}=11$[/tex] for [tex]$x$[/tex] using the change of base formula [tex]\log _b y=\frac{\log y}{\log b}[/tex].

A. [tex]-3.094[/tex]
B. [tex]-2.909[/tex]
C. [tex]4.916[/tex]
D. [tex]5.091[/tex]



Answer :

To solve the equation [tex]\(9^{x+4} = 11\)[/tex] for [tex]\(x\)[/tex] using logarithms, we follow these steps:

1. Express the equation in logarithmic form:
[tex]\[ 9^{x+4} = 11 \][/tex]
To solve for [tex]\(x\)[/tex], we take the logarithm of both sides of the equation. It is common to use base 10 logarithms (denoted as [tex]\(\log\)[/tex]):

[tex]\[ \log(9^{x+4}) = \log(11) \][/tex]

2. Apply the power rule of logarithms:
The power rule states that [tex]\(\log(a^b) = b \cdot \log(a)\)[/tex]. Applying this to our equation, we have:

[tex]\[ (x+4) \cdot \log(9) = \log(11) \][/tex]

3. Isolate the term involving [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], we divide both sides by [tex]\(\log(9)\)[/tex]:

[tex]\[ x + 4 = \frac{\log(11)}{\log(9)} \][/tex]

4. Calculate the values of the logarithms:
From the given solution, we know:
[tex]\[ \log(11) \approx 2.3979 \][/tex]
and
[tex]\[ \log(9) \approx 2.1972 \][/tex]

5. Substitute the logarithm values in the equation:
[tex]\[ x + 4 = \frac{2.3979}{2.1972} \][/tex]

6. Simplify the fraction:
[tex]\[ x + 4 \approx 1.0913 \][/tex]

7. Solve for [tex]\(x\)[/tex]:
Finally, subtract 4 from both sides to solve for [tex]\(x\)[/tex]:

[tex]\[ x = 1.0913 - 4 \][/tex]
[tex]\[ x \approx -2.909 \][/tex]

Thus, the solution to the equation [tex]\(9^{x+4} = 11\)[/tex] is [tex]\(x \approx -2.909\)[/tex].