10. If [tex]x=r \cos \theta[/tex] and [tex]y=r \sin \theta[/tex], then prove that

(i) [tex]\frac{\partial r}{\partial x}=\frac{\partial x}{\partial r}[/tex]

(ii) [tex]\frac{1}{r} \frac{\partial x}{\partial \theta}=r \frac{\partial \theta}{\partial x}[/tex]



Answer :

To prove the given partial derivative relationships, we will utilize the definitions of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in terms of [tex]\(r\)[/tex] and [tex]\(\theta\)[/tex], and use chain rule techniques. The equations given are:

[tex]\[x = r \cos \theta\][/tex]
[tex]\[y = r \sin \theta\][/tex]

### (i) Proving that [tex]\(\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r}\)[/tex]

First, we express [tex]\(r\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[r = \sqrt{x^2 + y^2}\][/tex]

Now, let's find [tex]\(\frac{\partial r}{\partial x}\)[/tex]:

[tex]\[ \frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2} \][/tex]
Considering [tex]\(y\)[/tex] as a constant while differentiating with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r} \][/tex]

Next, let's find [tex]\(\frac{\partial x}{\partial r}\)[/tex]:

[tex]\[ x = r \cos \theta \][/tex]
Considering [tex]\(\theta\)[/tex] as a constant while differentiating with respect to [tex]\(r\)[/tex]:
[tex]\[ \frac{\partial x}{\partial r} = \cos \theta \][/tex]

Given [tex]\(x = r \cos \theta\)[/tex], we can rewrite [tex]\(\cos \theta\)[/tex] as:
[tex]\[ \cos \theta = \frac{x}{r} \][/tex]

So,
[tex]\[ \frac{\partial x}{\partial r} = \frac{x}{r} \][/tex]

Therefore, we have:
[tex]\[ \frac{\partial r}{\partial x} = \frac{\partial x}{\partial r} \][/tex]

This completes the proof for part (i).

### (ii) Proving that [tex]\(\frac{1}{r} \frac{\partial x}{\partial \theta} = r \frac{\partial \theta}{\partial x}\)[/tex]

First, let's find [tex]\(\frac{\partial x}{\partial \theta}\)[/tex]:

[tex]\[ x = r \cos \theta \][/tex]
Considering [tex]\(r\)[/tex] as a constant while differentiating with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \frac{\partial x}{\partial \theta} = -r \sin \theta \][/tex]

Next, let's express [tex]\(\theta\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[ \theta = \tan^{-1}\left( \frac{y}{x} \right) \][/tex]

Now, let's find [tex]\(\frac{\partial \theta}{\partial x}\)[/tex]:

[tex]\[ \frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \tan^{-1}\left( \frac{y}{x} \right) \][/tex]
Considering [tex]\(y\)[/tex] as a constant while differentiating with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{\partial \theta}{\partial x} = \frac{-y}{x^2 + y^2} = \frac{-y}{r^2} \][/tex]

So, let's combine the results:

[tex]\[ \frac{1}{r} \frac{\partial x}{\partial \theta} = \frac{1}{r} \left(-r \sin \theta\right) = -\sin \theta \][/tex]

And:

[tex]\[ r \frac{\partial \theta}{\partial x} = r \left(\frac{-y}{r^2}\right) = \frac{-y}{r} \][/tex]

Given [tex]\(y = r \sin \theta\)[/tex], we can rewrite:
[tex]\[ \frac{-y}{r} = - \sin \theta \][/tex]

So, we have:
[tex]\[ \frac{1}{r} \frac{\partial x}{\partial \theta} = r \frac{\partial \theta}{\partial x} = - \sin \theta \][/tex]

This completes the proof for part (ii).

Thus, both statements are proven as required.