Which expressions listed below are equivalent to [tex]\sqrt{\frac{36 a^8}{225 a^2}}[/tex]? Check all that apply. (Assume that [tex]a \neq 0[/tex].)

A. [tex]\sqrt{\frac{2(2)(3)(3)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)}{3(3)(5)(5)(\alpha)(\alpha)}}[/tex]

B. [tex]\sqrt{\frac{40^6}{25}}[/tex]

C. [tex]\frac{6}{25} \sqrt{\frac{a^9}{a^2}}[/tex]

D. [tex]\frac{6}{15} a^4[/tex]

E. [tex]\frac{2}{5} a^3[/tex]

A. [tex] [/tex]
B. [tex] [/tex]
C. [tex] [/tex]
D. [tex] [/tex]
E. [tex] [/tex]



Answer :

To determine which of the given expressions are equivalent to [tex]\(\sqrt{\frac{36 a^8}{225 a^2}}\)[/tex], we can simplify the given expression and then compare it to each of the provided options.

1. Simplify the given expression:

[tex]\[ \sqrt{\frac{36 a^8}{225 a^2}} \][/tex]

First, simplify the fraction under the square root:

[tex]\[ \frac{36 a^8}{225 a^2} = \frac{36}{225} \cdot \frac{a^8}{a^2} = \frac{36}{225} \cdot a^{8-2} = \frac{36}{225} \cdot a^6 \][/tex]

Next, simplify the fraction:

[tex]\[ \frac{36}{225} = \frac{36 \div 9}{225 \div 9} = \frac{4}{25} \][/tex]

So, the expression simplifies to:

[tex]\[ \sqrt{\frac{4}{25} a^6} = \sqrt{\frac{4}{25}} \cdot \sqrt{a^6} = \frac{2}{5} \cdot a^3 = \frac{2}{5} a^3 \][/tex]

Therefore, [tex]\(\sqrt{\frac{36 a^8}{225 a^2}} = \frac{2}{5} a^3\)[/tex].

Now, compare this with each of the given expressions:

2. Compare with each option:

- Option A:

[tex]\[ \sqrt{\frac{2(2)(3)(3)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)(\alpha)}{3(3)(5)(5)(\alpha)(\alpha)}} = \sqrt{\frac{4 \cdot 9 \cdot \alpha^8}{9 \cdot 25 \cdot \alpha^2}} = \sqrt{\frac{36 \alpha^8}{225 \alpha^2}} \][/tex]

This simplifies to the original expression, so:

[tex]\[ \sqrt{\frac{36 a^8}{225 a^2}} = \frac{2}{5} a^3 \][/tex]

Thus, option A is equivalent.

- Option B:

[tex]\[ \sqrt{\frac{40^6}{25}} \][/tex]

This does not simplify directly into [tex]\(\frac{2}{5} a^3\)[/tex]. So, option B is not equivalent.

- Option C:

[tex]\[ \frac{6}{25} \sqrt{\frac{a^9}{a^2}} = \frac{6}{25} \sqrt{a^{9-2}} = \frac{6}{25} \sqrt{a^7} \][/tex]

This does not simplify directly to [tex]\(\frac{2}{5} a^3\)[/tex]. So, option C is not equivalent.

- Option D:

[tex]\[ \frac{6}{15} a^4 = \frac{2}{5} a^4 \][/tex]

This is not equivalent to [tex]\(\frac{2}{5} a^3\)[/tex]. So, option D is not equivalent.

- Option E:

[tex]\[ \frac{2}{5} a^3 \][/tex]

This is exactly the simplified form of the given expression. So, option E is equivalent.

3. Conclusion:

The expressions that are equivalent to [tex]\(\sqrt{\frac{36 a^8}{225 a^2}}\)[/tex] are:

- Option A: [tex]\(\frac{2}{5} a^3\)[/tex]
- Option E: [tex]\(\frac{2}{5} a^3\)[/tex]

Thus, the correct answers are A and E.