Johnny can build [tex]\(3 \frac{1}{2}\)[/tex] lego planes in 60 minutes. How many can he build in 40 minutes?

Simplify your answer completely.

[tex]\(\boxed{\frac{[]}{[]}} \)[/tex] lego planes



Answer :

To determine how many lego planes Johnny can build in 40 minutes, we can utilize a proportional relationship since his rate of building lego planes can be assumed to be constant.

Here's the detailed step-by-step solution:

1. Identify the known quantity and the required time period:
- Johnny can build [tex]\( 3.5 \)[/tex] lego planes in [tex]\( 60 \)[/tex] minutes.
- We need to find out how many lego planes he can build in [tex]\( 40 \)[/tex] minutes.

2. Calculate the rate of lego planes per minute:
- Johnny builds [tex]\( 3.5 \)[/tex] lego planes in [tex]\( 60 \)[/tex] minutes.
- To find the rate per minute, we divide the number of lego planes by the number of minutes:
[tex]\[ \text{Rate per minute} = \frac{3.5 \text{ lego planes}}{60 \text{ minutes}} = 0.0583\overline{3} \text{ lego planes per minute} \][/tex]

3. Determine the number of lego planes built in 40 minutes:
- Now, we will multiply the rate per minute by the desired time period (40 minutes):
[tex]\[ \text{Lego planes in 40 minutes} = 0.0583\overline{3} \text{ lego planes/minute} \times 40 \text{ minutes} = 2.3333\overline{3} \text{ lego planes} \][/tex]

4. Simplify the final answer (if applicable):
- The result [tex]\( 2.3333\overline{3} \)[/tex] can be simplified to:
[tex]\[ \frac{7}{3} \text{ lego planes} \][/tex]
- This can be written as:
[tex]\[ \frac{7}{3} \][/tex]

Thus, Johnny can build [tex]\( \frac{7}{3} \)[/tex] lego planes in 40 minutes.