Answer :
To find the simplified form of the quotient
[tex]\[ \frac{2 - \sqrt{8}}{4 + \sqrt{12}}, \][/tex]
we will proceed through several steps.
### Step 1: Simplify the Radical Terms
First, let's simplify the radical terms:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}, \quad \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}. \][/tex]
Substituting these into the original expression, we get:
[tex]\[ \frac{2 - 2\sqrt{2}}{4 + 2\sqrt{3}}. \][/tex]
### Step 2: Rationalize the Denominator
To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is [tex]\(4 - 2\sqrt{3}\)[/tex]:
[tex]\[ \frac{(2 - 2\sqrt{2})(4 - 2\sqrt{3})}{(4 + 2\sqrt{3})(4 - 2\sqrt{3})}. \][/tex]
### Step 3: Multiply the Numerator
Let's expand the numerator:
[tex]\[ (2 - 2\sqrt{2})(4 - 2\sqrt{3}) = 2 \cdot 4 + 2 \cdot (-2\sqrt{3}) - 2\sqrt{2} \cdot 4 - 2\sqrt{2} \cdot (-2\sqrt{3}). \][/tex]
Simplifying each term:
[tex]\[ = 8 - 4\sqrt{3} - 8\sqrt{2} + 4\sqrt{6}. \][/tex]
So, the simplified numerator is:
[tex]\[ 8 - 8\sqrt{2} - 4\sqrt{3} + 4\sqrt{6}. \][/tex]
### Step 4: Multiply the Denominator
Now, we expand the denominator:
[tex]\[ (4 + 2\sqrt{3})(4 - 2\sqrt{3}) = 4^2 - (2\sqrt{3})^2. \][/tex]
Calculating the terms:
[tex]\[ = 16 - 4 \cdot 3 = 16 - 12 = 4. \][/tex]
### Step 5: Simplify the Expression
Combining the results from steps 3 and 4:
[tex]\[ \frac{8 - 8\sqrt{2} - 4\sqrt{3} + 4\sqrt{6}}{4}. \][/tex]
We can simplify this by dividing each term in the numerator by 4:
[tex]\[ \frac{8}{4} - \frac{8\sqrt{2}}{4} - \frac{4\sqrt{3}}{4} + \frac{4\sqrt{6}}{4} = 2 - 2\sqrt{2} - \sqrt{3} + \sqrt{6}. \][/tex]
So, the simplified quotient is:
[tex]\[ 2 - 2\sqrt{2} - \sqrt{3} + \sqrt{6}. \][/tex]
This matches the choice:
[tex]\[ \boxed{2 - \sqrt{3} - 2\sqrt{2} + \sqrt{6}}. \][/tex]
[tex]\[ \frac{2 - \sqrt{8}}{4 + \sqrt{12}}, \][/tex]
we will proceed through several steps.
### Step 1: Simplify the Radical Terms
First, let's simplify the radical terms:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}, \quad \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}. \][/tex]
Substituting these into the original expression, we get:
[tex]\[ \frac{2 - 2\sqrt{2}}{4 + 2\sqrt{3}}. \][/tex]
### Step 2: Rationalize the Denominator
To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is [tex]\(4 - 2\sqrt{3}\)[/tex]:
[tex]\[ \frac{(2 - 2\sqrt{2})(4 - 2\sqrt{3})}{(4 + 2\sqrt{3})(4 - 2\sqrt{3})}. \][/tex]
### Step 3: Multiply the Numerator
Let's expand the numerator:
[tex]\[ (2 - 2\sqrt{2})(4 - 2\sqrt{3}) = 2 \cdot 4 + 2 \cdot (-2\sqrt{3}) - 2\sqrt{2} \cdot 4 - 2\sqrt{2} \cdot (-2\sqrt{3}). \][/tex]
Simplifying each term:
[tex]\[ = 8 - 4\sqrt{3} - 8\sqrt{2} + 4\sqrt{6}. \][/tex]
So, the simplified numerator is:
[tex]\[ 8 - 8\sqrt{2} - 4\sqrt{3} + 4\sqrt{6}. \][/tex]
### Step 4: Multiply the Denominator
Now, we expand the denominator:
[tex]\[ (4 + 2\sqrt{3})(4 - 2\sqrt{3}) = 4^2 - (2\sqrt{3})^2. \][/tex]
Calculating the terms:
[tex]\[ = 16 - 4 \cdot 3 = 16 - 12 = 4. \][/tex]
### Step 5: Simplify the Expression
Combining the results from steps 3 and 4:
[tex]\[ \frac{8 - 8\sqrt{2} - 4\sqrt{3} + 4\sqrt{6}}{4}. \][/tex]
We can simplify this by dividing each term in the numerator by 4:
[tex]\[ \frac{8}{4} - \frac{8\sqrt{2}}{4} - \frac{4\sqrt{3}}{4} + \frac{4\sqrt{6}}{4} = 2 - 2\sqrt{2} - \sqrt{3} + \sqrt{6}. \][/tex]
So, the simplified quotient is:
[tex]\[ 2 - 2\sqrt{2} - \sqrt{3} + \sqrt{6}. \][/tex]
This matches the choice:
[tex]\[ \boxed{2 - \sqrt{3} - 2\sqrt{2} + \sqrt{6}}. \][/tex]