A 150 kg crate is on a ramp that is inclined at [tex]$18.0^{\circ}$[/tex].

What is the [tex]$y$[/tex]-component of the weight of the crate?

[tex]w_y = \, ? \, N[/tex]



Answer :

To solve for the [tex]\( y \)[/tex]-component of the weight of a 150 kg crate on a ramp inclined at [tex]\( 18.0^\circ \)[/tex], let's follow these steps:

1. Calculate the weight of the crate:
- The weight ([tex]\( w \)[/tex]) is determined by the mass ([tex]\( m \)[/tex]) and gravitational acceleration ([tex]\( g \)[/tex]).
- Given: [tex]\( m = 150 \)[/tex] kg and [tex]\( g = 9.81 \)[/tex] m/s[tex]\(^2\)[/tex].

Formula for weight:
[tex]\[ w = m \cdot g \][/tex]
Substituting the given values:
[tex]\[ w = 150 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 1471.5 \, \text{N} \][/tex]

2. Convert the angle to radians:
- The angle given is [tex]\( 18.0^\circ \)[/tex].
- We convert degrees to radians using the formula:
[tex]\[ \text{radians} = \text{degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
Substituting the given angle:
[tex]\[ \text{radians} = 18.0 \times \left( \frac{\pi}{180} \right) = 0.3141592653589793 \, \text{radians} \][/tex]

3. Calculate the [tex]\( y \)[/tex]-component of the weight:
- The [tex]\( y \)[/tex]-component of the weight ([tex]\( w_y \)[/tex]) is found by multiplying the weight by the sine of the angle in radians.

Formula for the [tex]\( y \)[/tex]-component of the weight:
[tex]\[ w_y = w \cdot \sin(\text{angle in radians}) \][/tex]
Substituting the given values:
[tex]\[ w_y = 1471.5 \, \text{N} \times \sin(0.3141592653589793) \][/tex]

- Using a calculator to find the sine value (assuming a pre-calculated value):
[tex]\[ w_y = 1471.5 \, \text{N} \times 0.30901699437494745 = 454.71850722273507 \, \text{N} \][/tex]

So, the [tex]\( y \)[/tex]-component of the weight of the crate is approximately:
[tex]\[ w_y = 454.72 \, \text{N} \][/tex]