Answer :
To determine the volume of a box, you need to multiply its length, width, and height. Given the dimensions:
- Length: [tex]\( 24 \)[/tex] inches
- Width: [tex]\( 10 \)[/tex] inches
- Height: [tex]\( 10 \)[/tex] inches
First, calculate the volume in cubic inches:
[tex]\[ \text{Volume in cubic inches} = \text{length} \times \text{width} \times \text{height} \][/tex]
[tex]\[ \text{Volume in cubic inches} = 24 \times 10 \times 10 = 2400 \text{ cubic inches} \][/tex]
Next, convert the volume from cubic inches to cubic feet. There are [tex]\( 12 \)[/tex] inches in a foot, so one cubic foot is equal to [tex]\( 12 \times 12 \times 12 \)[/tex] cubic inches, which equals [tex]\( 1728 \)[/tex] cubic inches.
Now, divide the volume in cubic inches by the number of cubic inches in one cubic foot to get the volume in cubic feet:
[tex]\[ \text{Volume in cubic feet} = \frac{\text{Volume in cubic inches}}{\text{Cubic inches per cubic foot}} \][/tex]
[tex]\[ \text{Volume in cubic feet} = \frac{2400}{1728} \approx 1.3888888888888888 \text{ cubic feet} \][/tex]
So, the volume of the box is approximately [tex]\( 1.39 \)[/tex] cubic feet.
- Length: [tex]\( 24 \)[/tex] inches
- Width: [tex]\( 10 \)[/tex] inches
- Height: [tex]\( 10 \)[/tex] inches
First, calculate the volume in cubic inches:
[tex]\[ \text{Volume in cubic inches} = \text{length} \times \text{width} \times \text{height} \][/tex]
[tex]\[ \text{Volume in cubic inches} = 24 \times 10 \times 10 = 2400 \text{ cubic inches} \][/tex]
Next, convert the volume from cubic inches to cubic feet. There are [tex]\( 12 \)[/tex] inches in a foot, so one cubic foot is equal to [tex]\( 12 \times 12 \times 12 \)[/tex] cubic inches, which equals [tex]\( 1728 \)[/tex] cubic inches.
Now, divide the volume in cubic inches by the number of cubic inches in one cubic foot to get the volume in cubic feet:
[tex]\[ \text{Volume in cubic feet} = \frac{\text{Volume in cubic inches}}{\text{Cubic inches per cubic foot}} \][/tex]
[tex]\[ \text{Volume in cubic feet} = \frac{2400}{1728} \approx 1.3888888888888888 \text{ cubic feet} \][/tex]
So, the volume of the box is approximately [tex]\( 1.39 \)[/tex] cubic feet.