Write the simplest polynomial function with the given roots:
[tex]\[ \{-3, 2, 4\} \][/tex]

[tex]\[ P(x) = (x + 3)(x - 2)(x - 4) \][/tex]

Expand to find the polynomial:

[tex]\[ P(x) = x^3 - 3x^2 - 10x + 24 \][/tex]



Answer :

Certainly! Let's find the simplest polynomial function with the given roots [tex]\(-3\)[/tex], [tex]\(2\)[/tex], and [tex]\(4\)[/tex].

1. Identify the Roots:
The simplest polynomial with the given roots [tex]\(-3\)[/tex], [tex]\(2\)[/tex], and [tex]\(4\)[/tex] can be expressed using the factor form of a polynomial, which is [tex]\(P(x) = (x - \text{root1})(x - \text{root2})(x - \text{root3})\)[/tex].

2. Express the Polynomial with Factors:
Substituting the given roots, we get:
[tex]\[ P(x) = (x + 3)(x - 2)(x - 4) \][/tex]

3. Expand the Polynomial:
To find the polynomial [tex]\(P(x)\)[/tex] in standard form, we need to expand the expression [tex]\((x + 3)(x - 2)(x - 4)\)[/tex].

4. Step-by-Step Expansion:

- First, expand [tex]\((x + 3)(x - 2)\)[/tex]:
[tex]\[ (x + 3)(x - 2) = x^2 - 2x + 3x - 6 = x^2 + x - 6 \][/tex]

- Now, multiply this result by [tex]\((x - 4)\)[/tex]:
[tex]\[ (x^2 + x - 6)(x - 4) \][/tex]

- Distribute each term of [tex]\(x^2 + x - 6\)[/tex] by [tex]\(x - 4\)[/tex]:
[tex]\[ x^2(x - 4) + x(x - 4) - 6(x - 4) \][/tex]

- Calculating each term:
[tex]\[ x^2 \cdot x = x^3 \][/tex]
[tex]\[ x^2 \cdot (-4) = -4x^2 \][/tex]
[tex]\[ x \cdot x = x^2 \][/tex]
[tex]\[ x \cdot (-4) = -4x \][/tex]
[tex]\[ -6 \cdot x = -6x \][/tex]
[tex]\[ -6 \cdot (-4) = 24 \][/tex]

- Combine all the terms:
[tex]\[ x^3 - 4x^2 + x^2 - 4x - 6x + 24 \][/tex]

5. Combine Like Terms:
[tex]\[ x^3 - 4x^2 + x^2 - 10x + 24 \][/tex]
Simplify the above expression to obtain the final polynomial:
[tex]\[ x^3 - 3x^2 - 10x + 24 \][/tex]

Therefore, the simplest polynomial function with the given roots [tex]\(-3\)[/tex], [tex]\(2\)[/tex], and [tex]\(4\)[/tex] is:

[tex]\[ P(x) = x^3 - 3x^2 - 10x + 24 \][/tex]