\begin{tabular}{|c|l|}
\hline[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline-6 & 8 \\
\hline-3 & 2 \\
\hline 0 & 0 \\
\hline 3 & 2 \\
\hline 6 & 8 \\
\hline
\end{tabular}

What is the value of [tex]$k$[/tex]?



Answer :

Given the table for the function [tex]\( g(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & g(x) \\ \hline -6 & 8 \\ \hline -3 & 2 \\ \hline 0 & 0 \\ \hline 3 & 2 \\ \hline 6 & 8 \\ \hline \end{array} \][/tex]

To determine the value of [tex]\( k \)[/tex], let's analyze the values provided and identify any discernible patterns in the function [tex]\( g(x) \)[/tex].

We observe the following pairs:
- [tex]\( g(-6) = 8 \)[/tex]
- [tex]\( g(-3) = 2 \)[/tex]
- [tex]\( g(0) = 0 \)[/tex]
- [tex]\( g(3) = 2 \)[/tex]
- [tex]\( g(6) = 8 \)[/tex]

Notice the symmetry in the function values around [tex]\( x = 0 \)[/tex]:
- [tex]\( g(6) = g(-6) = 8 \)[/tex]
- [tex]\( g(3) = g(-3) = 2 \)[/tex]
- [tex]\( g(0) = 0 \)[/tex]

The symmetry indicates that [tex]\( g(x) \)[/tex] is an even function, where [tex]\( g(x) = g(-x) \)[/tex].

Given that the function values are symmetric and [tex]\( g(x) \)[/tex] does not depend on [tex]\( x \)[/tex] itself, but rather on its absolute value, we can deduce the values of [tex]\( g(x) \)[/tex] for given [tex]\( x \)[/tex] directly from the table.

Therefore, the value of [tex]\( k \)[/tex] that corresponds to this relationship is:

[tex]\[ k = \{-6: 8, -3: 2, 0: 0, 3: 2, 6: 8\} \][/tex]

Thus, based on the function values and the observed pattern, the table accurately captures the relationship.