Answer :

Sure, let's solve the equation [tex]\( c = \frac{100 b}{L} \)[/tex] step-by-step to find the value of [tex]\( L \)[/tex] for the given values [tex]\( c = 100 \)[/tex] and [tex]\( b = 9 \)[/tex].

1. Start with the given formula:
[tex]\[ c = \frac{100 b}{L} \][/tex]

2. Substitute the given values [tex]\( c = 100 \)[/tex] and [tex]\( b = 9 \)[/tex] into the equation:
[tex]\[ 100 = \frac{100 \times 9}{L} \][/tex]

3. Simplify the right-hand side of the equation:
[tex]\[ 100 = \frac{900}{L} \][/tex]

4. To solve for [tex]\( L \)[/tex], we need to isolate [tex]\( L \)[/tex]. To do this, multiply both sides of the equation by [tex]\( L \)[/tex]:
[tex]\[ 100L = 900 \][/tex]

5. Now, solve for [tex]\( L \)[/tex] by dividing both sides of the equation by 100:
[tex]\[ L = \frac{900}{100} \][/tex]

6. Simplify the division:
[tex]\[ L = 9 \][/tex]

Therefore, the value of [tex]\( L \)[/tex] is [tex]\( 9 \)[/tex].