The table shows the number of flowers in four bouquets and the total cost of each bouquet.

Cost of Bouquets

\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Number of flowers \\
in the bouquet
\end{tabular} & Total cost \\
\hline 8 & \[tex]$12 \\
\hline 12 & \$[/tex]40 \\
\hline 6 & \[tex]$15 \\
\hline 20 & \$[/tex]20 \\
\hline
\end{tabular}

What is the correlation coefficient for the data in the table?

A. [tex]$-0.57$[/tex]
B. [tex]$-0.28$[/tex]
C. 0.28
D. 0.57



Answer :

To find the correlation coefficient for the data in the table, follow these steps:

1. List the given data points:

Number of flowers in the bouquet: [tex]\( \{8, 12, 6, 20\} \)[/tex]

Total cost: [tex]\( \{12, 40, 15, 20\} \)[/tex]

2. Calculate the mean of both datasets:

Let's call the number of flowers dataset [tex]\( X \)[/tex] and the total cost dataset [tex]\( Y \)[/tex].

Mean of [tex]\( X \)[/tex] (number of flowers):
[tex]\[ \bar{X} = \frac{8 + 12 + 6 + 20}{4} = \frac{46}{4} = 11.5 \][/tex]

Mean of [tex]\( Y \)[/tex] (total cost):
[tex]\[ \bar{Y} = \frac{12 + 40 + 15 + 20}{4} = \frac{87}{4} = 21.75 \][/tex]

3. Compute the deviations from the mean for both datasets:

Deviations for [tex]\( X \)[/tex]:
[tex]\[ (8 - 11.5), (12 - 11.5), (6 - 11.5), (20 - 11.5) \][/tex]
[tex]\[ = -3.5, 0.5, -5.5, 8.5 \][/tex]

Deviations for [tex]\( Y \)[/tex]:
[tex]\[ (12 - 21.75), (40 - 21.75), (15 - 21.75), (20 - 21.75) \][/tex]
[tex]\[ = -9.75, 18.25, -6.75, -1.75 \][/tex]

4. Calculate the covariance of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

Covariance:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \][/tex]

Substituting the values:
[tex]\[ \text{Cov}(X, Y) = \frac{1}{3} \left[ (-3.5 \times -9.75) + (0.5 \times 18.25) + (-5.5 \times -6.75) + (8.5 \times -1.75) \right] \][/tex]
[tex]\[ = \frac{1}{3} \left[ 34.125 + 9.125 - 37.125 - 14.875 \right] = \frac{1}{3} (34.125 + 9.125 - 37.125 - 14.875) \][/tex]
[tex]\[ = \frac{1}{3} (-8.75) = -2.9167 \][/tex]

5. Calculate the standard deviations for both [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

Standard deviation of [tex]\( X \)[/tex]:
[tex]\[ \sigma_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(X_i - \bar{X})^2} \][/tex]
Standard deviation of [tex]\( Y \)[/tex]:
[tex]\[ \sigma_Y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(Y_i - \bar{Y})^2} \][/tex]

6. Compute the correlation coefficient, [tex]\( r \)[/tex]:

Correlation coefficient:
[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} = 0.2797351423151992 \][/tex]

Given the options:
[tex]\[ -0.57, -0.28, 0.28, 0.57 \][/tex]

The closest value to the calculated correlation coefficient is [tex]\( 0.28 \)[/tex].

Therefore, the correlation coefficient for the data in the table is:
[tex]\[ 0.28 \][/tex]