The accompanying data represent the approximate population, in millions, of the 20 most populous cities in the world.

\begin{tabular}{|c|c|c|c|c|}
\hline
13.6 & 12.4 & 9.2 & 8.7 & 7.6 \\
\hline
13.5 & 11.7 & 9.1 & 8.4 & 7.2 \\
\hline
13.3 & 10.7 & 9.1 & 8.4 & 7.1 \\
\hline
12.7 & 9.6 & 8.8 & 7.9 & 7.1 \\
\hline
\end{tabular}

Use these data to construct a frequency distribution with a first class of [tex]$6.5-7.5$[/tex]. Fill in the missing classes and the frequency for each class below.



Answer :

Sure, let's construct a frequency distribution with the given data:

First, let's list the data:
[tex]\[ 13.6, 12.4, 9.2, 8.7, 7.6, 13.5, 11.7, 9.1, 8.4, 7.2, 13.3, 10.7, 9.1, 8.4, 7.1, 12.7, 9.6, 8.8, 7.9, 7.1 \][/tex]

Now, let's define our class intervals starting with the first class of [tex]\(6.5-7.5\)[/tex]:
1. [tex]\(6.5-7.5\)[/tex]
2. [tex]\(7.5-8.5\)[/tex]
3. [tex]\(8.5-9.5\)[/tex]
4. [tex]\(9.5-10.5\)[/tex]
5. [tex]\(10.5-11.5\)[/tex]
6. [tex]\(11.5-12.5\)[/tex]
7. [tex]\(12.5-13.5\)[/tex]
8. [tex]\(13.5-14.5\)[/tex]

Next, we'll count the number of data points that fall into each class interval:

1. [tex]\(6.5-7.5\)[/tex]:
- Values: [tex]\(7.2, 7.1, 7.1\)[/tex]
- Frequency: 3

2. [tex]\(7.5-8.5\)[/tex]:
- Values: [tex]\(7.6, 8.4, 8.4, 7.9\)[/tex]
- Frequency: 4

3. [tex]\(8.5-9.5\)[/tex]:
- Values: [tex]\(9.2, 8.7, 9.1, 9.1, 8.8\)[/tex]
- Frequency: 5

4. [tex]\(9.5-10.5\)[/tex]:
- Values: [tex]\(9.6\)[/tex]
- Frequency: 1

5. [tex]\(10.5-11.5\)[/tex]:
- Values: [tex]\(10.7\)[/tex]
- Frequency: 1

6. [tex]\(11.5-12.5\)[/tex]:
- Values: [tex]\(11.7, 12.4\)[/tex]
- Frequency: 2

7. [tex]\(12.5-13.5\)[/tex]:
- Values: [tex]\(12.7, 13.3\)[/tex]
- Frequency: 2

8. [tex]\(13.5-14.5\)[/tex]:
- Values: [tex]\(13.6, 13.5\)[/tex]
- Frequency: 2

The completed frequency distribution is as follows:

[tex]\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 6.5-7.5 & 3 \\ \hline 7.5-8.5 & 4 \\ \hline 8.5-9.5 & 5 \\ \hline 9.5-10.5 & 1 \\ \hline 10.5-11.5 & 1 \\ \hline 11.5-12.5 & 2 \\ \hline 12.5-13.5 & 2 \\ \hline 13.5-14.5 & 2 \\ \hline \end{array} \][/tex]

This table provides a clear visual representation of the frequency distribution of the population data based on the given class intervals.