\begin{tabular}{|c|c|}
\hline Week & Miles Run \\
\hline 1 & 5 \\
\hline 2 & 8 \\
\hline 4 & 13 \\
\hline 6 & 15 \\
\hline 8 & 19 \\
\hline 10 & 20 \\
\hline
\end{tabular}

Rita is starting a running program. The table shows the total number of miles she runs in different weeks.

What is the equation of the line of best fit for the data? State each number to the thousandths place.

[tex]\[ y \approx \square x + \square \][/tex]



Answer :

To determine the equation of the line of best fit for the given data, we need to perform linear regression. The goal is to find the equation in the form:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

Steps:

1. Identify the data points:

Week ([tex]\(x\)[/tex]) and corresponding Miles Run ([tex]\(y\)[/tex]):

[tex]\[ \begin{array}{|c|c|} \hline \text{Week} & \text{Miles Run} \\ \hline 1 & 5 \\ \hline 2 & 8 \\ \hline 4 & 13 \\ \hline 6 & 15 \\ \hline 8 & 19 \\ \hline 10 & 20 \\ \hline \end{array} \][/tex]

2. Calculate the slope [tex]\( m \)[/tex] and y-intercept [tex]\( b \)[/tex]:

By performing linear regression on the given data points, the best fit line is found to have:
[tex]\[ m \approx 1.671 \][/tex]
[tex]\[ b \approx 4.699 \][/tex]

3. Write the equation of the line:

Substitute the values of [tex]\( m \)[/tex] and [tex]\( b \)[/tex] into the linear equation [tex]\( y = mx + b \)[/tex]:
[tex]\[ y \approx 1.671x + 4.699 \][/tex]

In conclusion, the equation of the line of best fit for the given data, rounded to the thousandths place, is:
[tex]\[ y \approx 1.671x + 4.699 \][/tex]