How many moles are in [tex]2.11 \times 10^{24}[/tex] molecules of [tex]BeF_2[/tex]?

[tex]\[2.11 \times 10^{24} \text{ molecules } BeF_2 \times \frac{1 \text{ mol } BeF_2}{6.02 \times 10^{23} \text{ molecules } BeF_2}\][/tex]

[?] mol [tex]BeF_2[/tex]

Round your answer to the nearest tenth.



Answer :

To find out how many moles are in [tex]\(2.11 \times 10^{24}\)[/tex] molecules of [tex]\(BeF_2\)[/tex], we will use Avogadro's number. Avogadro's number is [tex]\(6.02 \times 10^{23}\)[/tex], which is the number of molecules in one mole of a substance.

Here is a detailed step-by-step solution:

1. Given Data:
- Number of molecules of [tex]\(BeF_2\)[/tex]: [tex]\(2.11 \times 10^{24}\)[/tex] molecules
- Avogadro's number: [tex]\(6.02 \times 10^{23}\)[/tex] molecules per mole

2. Formula to find moles:
[tex]\[ \text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}} \][/tex]

3. Substitute the given values into the formula:
[tex]\[ \text{Number of moles} = \frac{2.11 \times 10^{24} \text{ molecules}}{6.02 \times 10^{23} \text{ molecules per mole}} \][/tex]

4. Perform the division to find the number of moles:
[tex]\[ \text{Number of moles} \approx 3.504983388704319 \][/tex]

5. Round the result to the nearest tenth:
[tex]\[ \text{Number of moles} \approx 3.5 \][/tex]

So, the number of moles in [tex]\(2.11 \times 10^{24}\)[/tex] molecules of [tex]\(BeF_2\)[/tex] is approximately 3.5 moles when rounded to the nearest tenth.