What is the value of the expression, written in standard form?

[tex]\[ \frac{6.6 \times 10^{-2}}{3.3 \times 10^{-4}} \][/tex]



Answer :

To find the value of the expression [tex]\(\frac{\left(6.6 \times 10^{-2}\right)}{\left(3.3 \times 10^{-4}\right)}\)[/tex], we can follow these steps:

1. Identify the parts of the expression:
- The numerator is [tex]\(6.6 \times 10^{-2}\)[/tex]
- The denominator is [tex]\(3.3 \times 10^{-4}\)[/tex]

2. Simplify the fraction by dividing the coefficients (the numbers in front of the powers of ten):
[tex]\[ \frac{6.6}{3.3} = 2.0 \][/tex]

3. Simplify the powers of ten:
[tex]\[ \frac{10^{-2}}{10^{-4}} = 10^{-2 - (-4)} = 10^{-2 + 4} = 10^2 \][/tex]

4. Combine the results from steps 2 and 3:
[tex]\[ 2.0 \times 10^2 \][/tex]

Thus, the value of the expression [tex]\(\frac{\left(6.6 \times 10^{-2}\right)}{\left(3.3 \times 10^{-4}\right)}\)[/tex] in standard form is [tex]\(200.0\)[/tex].