Answer :
To determine the number of molecules in 0.5 mole of [tex]\(P_2O_3\)[/tex], let us follow a step-by-step approach.
First, recall that 1 mole of any substance contains [tex]\(6.02 \times 10^{23}\)[/tex] particles (Avogadro's number). Here, we are dealing with molecules of [tex]\(P_2O_3\)[/tex].
1. Given:
- Avogadro's number: [tex]\(6.02 \times 10^{23}\)[/tex] particles per mole.
- Moles of [tex]\(P_2O_3\)[/tex]: 0.5 moles.
2. Calculate the number of molecules in 0.5 mole of [tex]\(P_2O_3\)[/tex]:
- Number of molecules = (Number of moles) [tex]\(\times\)[/tex] (Avogadro's number).
- Number of molecules = [tex]\(0.5 \times 6.02 \times 10^{23}\)[/tex].
3. Now, perform the multiplication:
- Number of molecules = [tex]\(3.01 \times 10^{23}\)[/tex].
Thus, there are [tex]\(3.01 \times 10^{23}\)[/tex] molecules in 0.5 mole of [tex]\(P_2O_3\)[/tex].
So, the coefficient is [tex]\(3.01\)[/tex] (in the green box) and the exponent is [tex]\(23\)[/tex] (in the yellow box).
First, recall that 1 mole of any substance contains [tex]\(6.02 \times 10^{23}\)[/tex] particles (Avogadro's number). Here, we are dealing with molecules of [tex]\(P_2O_3\)[/tex].
1. Given:
- Avogadro's number: [tex]\(6.02 \times 10^{23}\)[/tex] particles per mole.
- Moles of [tex]\(P_2O_3\)[/tex]: 0.5 moles.
2. Calculate the number of molecules in 0.5 mole of [tex]\(P_2O_3\)[/tex]:
- Number of molecules = (Number of moles) [tex]\(\times\)[/tex] (Avogadro's number).
- Number of molecules = [tex]\(0.5 \times 6.02 \times 10^{23}\)[/tex].
3. Now, perform the multiplication:
- Number of molecules = [tex]\(3.01 \times 10^{23}\)[/tex].
Thus, there are [tex]\(3.01 \times 10^{23}\)[/tex] molecules in 0.5 mole of [tex]\(P_2O_3\)[/tex].
So, the coefficient is [tex]\(3.01\)[/tex] (in the green box) and the exponent is [tex]\(23\)[/tex] (in the yellow box).