If [tex]$v = 2i - 5j$[/tex] and [tex]$w = xi + 7j$[/tex], find all numbers [tex][tex]$x$[/tex][/tex] for which [tex]$\|v+w\|=4$[/tex].

Select the correct choice and fill in any answer boxes in your choice below.

A. [tex]$x = \ \square$[/tex]

(Type an exact answer, using radicals as needed. Simplify your answer. Use a comma to separate answers as needed.)

B. There is no solution.



Answer :

To solve for the values of [tex]\( x \)[/tex] such that [tex]\( \|v + w\| = 4 \)[/tex] where [tex]\( v = 2i - 5j \)[/tex] and [tex]\( w = xi + 7j \)[/tex], follow these steps:

1. Express the vectors in component form:
- [tex]\( v = (2, -5) \)[/tex]
- [tex]\( w = (x, 7) \)[/tex]

2. Compute the sum of the vectors [tex]\( v + w \)[/tex]:
[tex]\[ v + w = (2 + x)i + (-5 + 7)j = (2 + x, 2) \][/tex]

3. Calculate the magnitude of the resulting vector [tex]\( v + w \)[/tex]:
[tex]\[ \|v + w\| = \sqrt{(2 + x)^2 + 2^2} \][/tex]

4. Set the magnitude equal to 4 and form the equation:
[tex]\[ \sqrt{(2 + x)^2 + 4} = 4 \][/tex]

5. Square both sides to eliminate the square root:
[tex]\[ (2 + x)^2 + 4 = 16 \][/tex]

6. Simplify the equation:
[tex]\[ (2 + x)^2 + 4 = 16 \implies (2 + x)^2 = 12 \][/tex]

7. Solve for [tex]\( 2 + x \)[/tex]:
[tex]\[ 2 + x = \pm \sqrt{12} \implies 2 + x = \pm 2\sqrt{3} \][/tex]

8. Isolate [tex]\( x \)[/tex]:
[tex]\[ x = -2 + 2\sqrt{3} \quad \text{or} \quad x = -2 - 2\sqrt{3} \][/tex]

Therefore, the solutions for [tex]\( x \)[/tex] are:
[tex]\[ x = -2 + 2\sqrt{3}, \quad x = -2 - 2\sqrt{3} \][/tex]

Hence, the correct choice is:
A. [tex]\( x = -2 + 2\sqrt{3}, -2 - 2\sqrt{3} \)[/tex]