A jumbo jet maintains a constant airspeed of 550 miles per hour (mi/hr) headed due north. The jet stream is [tex]110 \text{ mi/hr}[/tex] in the northeasterly direction.

(a) Express the velocity [tex]v_{a}[/tex] of the jet relative to the air and the velocity [tex]v_{w}[/tex] of the jet stream in terms of [tex]i[/tex] and [tex]j[/tex].

(b) Find the velocity of the jet relative to the ground.

(c) Find the actual speed and direction of the jet relative to the ground.

[tex]\[
\begin{array}{l}
\text{(a) Find } v_{a}. \\
v_{a} = \square
\end{array}
\][/tex]
(Simplify your answer. Type your answer in the form [tex]ai + bj[/tex]. Type an exact answer, using radicals as needed.)



Answer :

First, let's break down each part of the question and provide a detailed, step-by-step solution.

### Part (a)

Express the velocity [tex]\( v_{a} \)[/tex] of the jet relative to the air and the velocity [tex]\( v_{w} \)[/tex] of the jet stream in terms of [tex]\( \mathbf{i} \)[/tex] and [tex]\( \mathbf{j} \)[/tex]

1. Velocity of the jet relative to the air, [tex]\( v_{a} \)[/tex]:
The jet is moving due north at a constant airspeed of 550 miles per hour. In vector notation:
[tex]\[ v_{a} = 0\mathbf{i} + 550\mathbf{j} \][/tex]
So, [tex]\( v_{a} \)[/tex] is:
[tex]\[ v_{a} = 0\mathbf{i} + 550\mathbf{j} \][/tex]

2. Velocity of the jet stream, [tex]\( v_{w} \)[/tex]:
The jet stream is moving in a northeasterly direction at 110 miles per hour. Since northeast is at a 45-degree angle, we can break this vector down into its components.

Both the [tex]\( \mathbf{i} \)[/tex] (east) and [tex]\( \mathbf{j} \)[/tex] (north) components can be found using the cosine and sine of 45 degrees, respectively, multiplied by the speed.

[tex]\[ v_{w,i} = 110 \cos(45^\circ) = 110 \left(\frac{\sqrt{2}}{2}\right) = 77.78 \][/tex]

[tex]\[ v_{w,j} = 110 \sin(45^\circ) = 110 \left(\frac{\sqrt{2}}{2}\right) = 77.78 \][/tex]

Therefore, the velocity of the jet stream [tex]\( v_{w} \)[/tex] is:
[tex]\[ v_{w} = v_{w,i}\mathbf{i} + v_{w,j}\mathbf{j} = 77.78\mathbf{i} + 77.78\mathbf{j} \][/tex]

### Part (b)

Find the velocity of the jet relative to the ground

To find the velocity of the jet relative to the ground [tex]\( v_{g} \)[/tex], we add the vectors [tex]\( v_{a} \)[/tex] and [tex]\( v_{w} \)[/tex]:

[tex]\[ v_{g} = v_{a} + v_{w} \][/tex]

Given:
[tex]\[ v_{a} = 0\mathbf{i} + 550\mathbf{j} \][/tex]
[tex]\[ v_{w} = 77.78\mathbf{i} + 77.78\mathbf{j} \][/tex]

[tex]\[ v_{g} = (0 + 77.78)\mathbf{i} + (550 + 77.78)\mathbf{j} \][/tex]

[tex]\[ v_{g} = 77.78\mathbf{i} + 627.78\mathbf{j} \][/tex]

### Part (c)

Find the actual speed and direction of the jet relative to the ground

1. Actual Speed:

The actual speed of the jet relative to the ground can be found using the magnitude of [tex]\( v_{g} \)[/tex]:

[tex]\[ \text{Speed} = \sqrt{v_{g,i}^2 + v_{g,j}^2} \][/tex]

[tex]\[ \text{Speed} = \sqrt{(77.78)^2 + (627.78)^2} \][/tex]

[tex]\[ = 632.58 \text{ miles per hour} \][/tex]

2. Direction:

The direction (angle) of the velocity vector relative to the ground can be found using the arctangent function:

[tex]\[ \theta = \tan^{-2}\left(\frac{v_{g,j}}{v_{g,i}}\right) \][/tex]

[tex]\[ \theta = \tan^{-1}\left(\frac{627.78}{77.78}\right) \][/tex]

[tex]\[ \theta \approx 82.94^\circ \text{ (measured from the positive x-axis, east, towards the positive y-axis, north)} \][/tex]

### Summary

(a) The velocity [tex]\( v_{a} \)[/tex] of the jet relative to the air:
[tex]\[ v_{a} = 0\mathbf{i} + 550\mathbf{j} \][/tex]

The velocity [tex]\( v_{w} \)[/tex] of the jet stream:
[tex]\[ v_{w} = 77.78\mathbf{i} + 77.78\mathbf{j} \][/tex]

(b) The velocity of the jet relative to the ground:
[tex]\[ v_{g} = 77.78\mathbf{i} + 627.78\mathbf{j} \][/tex]

(c) The actual speed and direction of the jet relative to the ground:
[tex]\[ \text{Speed} = 632.58 \text{ miles per hour} \][/tex]
[tex]\[ \text{Direction} \approx 82.94^\circ \][/tex]