Cumulative Exam Review

The table represents a linear function. What is the slope of the function?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-4 & -2 \\
\hline
-2 & -10 \\
\hline
-1 & -14 \\
\hline
1 & -22 \\
\hline
2 & -26 \\
\hline
\end{tabular}

A. -8
B. -4
C. 2
D. 5



Answer :

To determine the slope of a linear function given by a set of points, you can use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\(m\)[/tex] is the slope, and [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are any two points on the line.

Let's use the points [tex]\((-4, -2)\)[/tex] and [tex]\((-2, -10)\)[/tex] from the table:

Step-by-Step Solution:

1. Identify the coordinates of the two points.
[tex]\[ (x_1, y_1) = (-4, -2) \][/tex]
[tex]\[ (x_2, y_2) = (-2, -10) \][/tex]

2. Substitute these coordinates into the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

3. Perform the substitution:
[tex]\[ m = \frac{-10 - (-2)}{-2 - (-4)} \][/tex]

4. Simplify inside the parentheses:
[tex]\[ m = \frac{-10 + 2}{-2 + 4} \][/tex]
[tex]\[ m = \frac{-8}{2} \][/tex]

5. Divide to get the slope:
[tex]\[ m = -4 \][/tex]

Thus, the slope of the function is [tex]\(-4\)[/tex].