Answer :
To determine the value of [tex]\( y \)[/tex] in the equation [tex]\( 3(-x + y) + 2x \)[/tex]:
1. Simplify the expression:
Start by distributing the 3 across the terms inside the parentheses:
[tex]\[ 3(-x + y) + 2x = 3 \cdot (-x) + 3 \cdot y + 2x = -3x + 3y + 2x \][/tex]
2. Combine like terms:
Combine the [tex]\( x \)[/tex]-terms in the simplified expression:
[tex]\[ -3x + 2x + 3y = (-3x + 2x) + 3y = -x + 3y \][/tex]
3. Solve for [tex]\( y \)[/tex] if necessary:
The equation is simplified as [tex]\( -x + 3y \)[/tex]. To find [tex]\( y \)[/tex], we can rearrange terms assuming we need to isolate [tex]\( y \)[/tex]:
[tex]\[ -x + 3y = C \][/tex]
Here, [tex]\( C \)[/tex] is some constant.
Rewriting the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 3y = x + C \][/tex]
Then divide both sides by 3:
[tex]\[ y = \frac{x + C}{3} \][/tex]
4. Identify the best matching value Givin the choices:
Given the choices, and knowing what we derived:
[tex]\[ A) x B) 2 C) 4x D) -7 E) None of the above \][/tex]
The most suitable answer for the value of [tex]\[ y \][/tex] under the presumption is:
- Final Answer is:
\ (E) none of the above.
1. Simplify the expression:
Start by distributing the 3 across the terms inside the parentheses:
[tex]\[ 3(-x + y) + 2x = 3 \cdot (-x) + 3 \cdot y + 2x = -3x + 3y + 2x \][/tex]
2. Combine like terms:
Combine the [tex]\( x \)[/tex]-terms in the simplified expression:
[tex]\[ -3x + 2x + 3y = (-3x + 2x) + 3y = -x + 3y \][/tex]
3. Solve for [tex]\( y \)[/tex] if necessary:
The equation is simplified as [tex]\( -x + 3y \)[/tex]. To find [tex]\( y \)[/tex], we can rearrange terms assuming we need to isolate [tex]\( y \)[/tex]:
[tex]\[ -x + 3y = C \][/tex]
Here, [tex]\( C \)[/tex] is some constant.
Rewriting the equation to solve for [tex]\( y \)[/tex]:
[tex]\[ 3y = x + C \][/tex]
Then divide both sides by 3:
[tex]\[ y = \frac{x + C}{3} \][/tex]
4. Identify the best matching value Givin the choices:
Given the choices, and knowing what we derived:
[tex]\[ A) x B) 2 C) 4x D) -7 E) None of the above \][/tex]
The most suitable answer for the value of [tex]\[ y \][/tex] under the presumption is:
- Final Answer is:
\ (E) none of the above.