What is the frequency of a blue light with a wavelength of [tex]4.83 \times 10^{-7} \text{ m}[/tex]?

Given: [tex]c = 3.0 \times 10^8 \text{ m/s}[/tex]

[tex]f = \frac{c}{\lambda}[/tex]

Calculate the frequency [tex]f[/tex] in [tex]\text{Hz}[/tex].



Answer :

To find the frequency of blue light given its wavelength, we can use the relationship between the speed of light ([tex]\( c \)[/tex]), wavelength ([tex]\( \lambda \)[/tex]), and frequency ([tex]\( f \)[/tex]). The formula is:

[tex]\[ f = \frac{c}{\lambda} \][/tex]

Here’s the given data:

- Wavelength ([tex]\( \lambda \)[/tex]) = [tex]\( 4.83 \times 10^{-7} \)[/tex] meters
- Speed of light ([tex]\( c \)[/tex]) = [tex]\( 3.0 \times 10^8 \)[/tex] meters per second

Now, let's substitute the given values into the formula.

1. We have:
[tex]\[ f = \frac{3.0 \times 10^8 \, \text{m/s}}{4.83 \times 10^{-7} \, \text{m}} \][/tex]

2. Perform the division:
[tex]\[ f \approx \frac{3.0 \times 10^8}{4.83 \times 10^{-7}} \][/tex]

3. To express the result in scientific notation, let's break the calculation into parts.
- First, divide the coefficients (numbers in front):
[tex]\[ \frac{3.0}{4.83} \approx 0.6219 \, (\text{approximate value}) \][/tex]
- Then, handle the power of ten:
[tex]\[ \frac{10^8}{10^{-7}} = 10^{8 - (-7)} = 10^{15} \][/tex]

4. Combine both results:
[tex]\[ f \approx 0.6219 \times 10^{15} \, \text{Hz} \][/tex]

Now, to match the scientific notation format:
[tex]\[ f \approx 6.21 \times 10^{14} \, \text{Hz} \][/tex]

So, the frequency of the blue light with a wavelength of [tex]\( 4.83 \times 10^{-7} \)[/tex] meters is approximately [tex]\( 6.21 \times 10^{14} \)[/tex] Hz.