For the function [tex]f(x) = x^2 + 5x + 1[/tex], complete parts (a) through (c).

(a) [tex]f(x+h) = \boxed{\text{(Simplify your answer.)}}[/tex]



Answer :

To solve for [tex]\( f(x+h) \)[/tex] for the function [tex]\( f(x) = x^2 + 5x + 1 \)[/tex], we need to substitute [tex]\( x \)[/tex] in the function with [tex]\( (x+h) \)[/tex]. Let's go through this step-by-step:

1. Start with the given function:
[tex]\[ f(x) = x^2 + 5x + 1 \][/tex]

2. Substitute [tex]\( x \)[/tex] with [tex]\( (x+h) \)[/tex] in the function:
[tex]\[ f(x+h) = (x+h)^2 + 5(x+h) + 1 \][/tex]

3. Expand [tex]\((x+h)^2\)[/tex]:
[tex]\[ (x+h)^2 = x^2 + 2xh + h^2 \][/tex]

4. Substitute back into the expression:
[tex]\[ f(x+h) = x^2 + 2xh + h^2 + 5(x+h) + 1 \][/tex]

5. Distribute the 5 in the term [tex]\( 5(x+h) \)[/tex]:
[tex]\[ 5(x+h) = 5x + 5h \][/tex]

6. Combine all the terms:
[tex]\[ f(x+h) = x^2 + 2xh + h^2 + 5x + 5h + 1 \][/tex]

7. Simplify the expression by combining like terms:
[tex]\[ f(x+h) = x^2 + 5x + 1 + 2xh + h^2 + 5h \][/tex]
[tex]\[ f(x+h) = x^2 + 2xh + h^2 + 5x + 5h + 1 \][/tex]

Hence, the simplified expression for [tex]\( f(x+h) \)[/tex] is:
[tex]\[ f(x+h) = (h + x)^2 + 5h + 5x + 1 \][/tex]