Given the functions:
[tex]\[
\begin{array}{l}
g(x) = -20 - 3x \\
h(x) = \left(\frac{1}{2}\right)^x
\end{array}
\][/tex]

Evaluate:
[tex]\[
(g \circ h)(-2)
\][/tex]



Answer :

To solve the given function composition [tex]\((g \circ h)(-2)\)[/tex], we need to apply the function [tex]\(h\)[/tex] first with the input [tex]\(-2\)[/tex], and then apply the function [tex]\(g\)[/tex] to the result of [tex]\(h(-2)\)[/tex].

Here’s a detailed step-by-step solution:

1. Identify the functions:
[tex]\[ g(x) = -20 - 3x \][/tex]
[tex]\[ h(x) = \left( \frac{1}{2} \right)^x \][/tex]

2. Evaluate [tex]\(h(-2)\)[/tex]:
[tex]\[ h(-2) = \left( \frac{1}{2} \right)^{-2} \][/tex]

Using the properties of exponents, [tex]\(\left( \frac{1}{2} \right)^{-2}\)[/tex] is equal to:

[tex]\[ \left( \frac{1}{2} \right)^{-2} = \left( \frac{1}{2} \right)^{-2} = \left( 2 \right)^2 = 4 \][/tex]

So,
[tex]\[ h(-2) = 4 \][/tex]

3. Evaluate [tex]\(g(h(-2))\)[/tex], which means [tex]\(g(4)\)[/tex]:
Substitute [tex]\(4\)[/tex] into the function [tex]\(g(x)\)[/tex]:
[tex]\[ g(4) = -20 - 3 \cdot 4 \][/tex]

4. Perform the arithmetic operations:
[tex]\[ g(4) = -20 - 12 = -32 \][/tex]

Therefore, [tex]\((g \circ h)(-2) = g(h(-2)) = g(4) = -32\)[/tex].

So, the step-by-step solution yields:
[tex]\[ (g \circ h)(-2) = -32 \][/tex]

The intermediate steps result in:
[tex]\[ h(-2) = 4 \][/tex]
[tex]\[ g(4) = -32 \][/tex]

Thus, the final answer is:
[tex]\[ (g \circ h)(-2) = -32 \][/tex]