1. Identify equivalent expressions involving exponents.

Which expression is equivalent to [tex]$6^8 \cdot 6^3$[/tex]?

A. [tex]\frac{12^{11}}{2^{11}}[/tex]
B. [tex]6^{24}[/tex]
C. [tex]\frac{1}{6^{11}}[/tex]
D. [tex]\left(6^5\right)^6[/tex]

Submit



Answer :

Sure, let's break down the problem step-by-step.

We need to find which expression is equivalent to [tex]\( 6^8 \cdot 6^3 \)[/tex].

### Step 1: Use the properties of exponents

One of the fundamental properties of exponents states that when you multiply two exponential expressions with the same base, you add their exponents:

[tex]\[ a^m \cdot a^n = a^{m+n} \][/tex]

In this case, our base is [tex]\( 6 \)[/tex], [tex]\( m = 8 \)[/tex], and [tex]\( n = 3 \)[/tex]. Therefore:

[tex]\[ 6^8 \cdot 6^3 = 6^{8+3} \][/tex]

### Step 2: Simplify the exponent sum

Add the exponents together:

[tex]\[ 8 + 3 = 11 \][/tex]

So, we get:

[tex]\[ 6^8 \cdot 6^3 = 6^{11} \][/tex]

### Step 3: Compare with given options

Now we match [tex]\( 6^{11} \)[/tex] with the options provided:

1. [tex]\(\frac{12^{11}}{2^{11}}\)[/tex]:

This can be simplified using the property [tex]\( \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \)[/tex]:

[tex]\[ \frac{12^{11}}{2^{11}} = \left(\frac{12}{2}\right)^{11} = 6^{11} \][/tex]

2. [tex]\( 6^{24} \)[/tex]:

Clearly, [tex]\( 6^{24} \neq 6^{11} \)[/tex].

3. [tex]\(\frac{1}{6^{11}}\)[/tex]:

This is the reciprocal of [tex]\( 6^{11} \)[/tex], so it does not equal [tex]\( 6^{11} \)[/tex].

4. [tex]\(\left(6^5\right)^6\)[/tex]:

Using the property [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex]:

[tex]\[ \left(6^5\right)^6 = 6^{5 \cdot 6} = 6^{30} \][/tex]

This also does not equal [tex]\( 6^{11} \)[/tex].

### Conclusion

The expression equivalent to [tex]\( 6^8 \cdot 6^3 \)[/tex] is [tex]\(\frac{12^{11}}{2^{11}}\)[/tex].