Find [tex]\tan^{-1} 1.4826[/tex] to the nearest degree.

A. [tex]11^{\circ}[/tex]
B. [tex]56^{\circ}[/tex]
C. [tex]4^{\circ}[/tex]
D. [tex]34^{\circ}[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To solve the problem of finding [tex]\(\tan^{-1} 1.4826\)[/tex] to the nearest degree, follow these steps:

1. Understand the inverse tangent function ([tex]\(\tan^{-1}\)[/tex]):
The inverse tangent (or arctangent) function returns the angle whose tangent is the given number.

2. Calculate [tex]\(\tan^{-1} 1.4826\)[/tex]:
Use a calculator or a mathematical tool to find the angle in radians:
[tex]\[ \tan^{-1} 1.4826 \approx 0.9774 \text{ radians} \][/tex]

3. Convert radians to degrees:
To convert an angle from radians to degrees, use the conversion factor [tex]\(\frac{180^\circ}{\pi} \)[/tex]:
[tex]\[ \text{Angle in degrees} = 0.9774 \times \frac{180^\circ}{\pi} \approx 56.001^\circ \][/tex]

4. Round to the nearest degree:
Since [tex]\(56.001^\circ\)[/tex] is very close to [tex]\(56^\circ\)[/tex], we round it to the nearest whole number.
[tex]\[ \text{Rounded Degrees} = 56^\circ \][/tex]

Therefore, the closest degree to [tex]\(\tan^{-1} 1.4826\)[/tex] is [tex]\(56^\circ\)[/tex].

Thus, the correct answer is:
b. [tex]\(56^\circ\)[/tex].