Select the correct answer.

The function [tex]$g(x) = x^2$[/tex] is transformed to obtain function [tex]$h$[/tex]:

[tex]$h(x) = g(x-3)$[/tex]

Which statement describes how the graph of [tex][tex]$h$[/tex][/tex] is different from the graph of [tex]$g$[/tex]?

A. The graph of [tex]$h$[/tex] is the graph of [tex][tex]$g$[/tex][/tex] horizontally shifted right 3 units.
B. The graph of [tex]$h$[/tex] is the graph of [tex]$g$[/tex] horizontally shifted left 3 units.
C. The graph of [tex][tex]$h$[/tex][/tex] is the graph of [tex]$g$[/tex] vertically shifted down 3 units.
D. The graph of [tex]$h$[/tex] is the graph of [tex][tex]$g$[/tex][/tex] vertically shifted up 3 units.



Answer :

Let's analyze the transformation applied to the function [tex]\( g(x) = x^2 \)[/tex] to obtain the function [tex]\( h(x) \)[/tex].

The transformation given is:
[tex]\[ h(x) = g(x - 3) \][/tex]
This means wherever there was an [tex]\( x \)[/tex] in [tex]\( g(x) \)[/tex], it is replaced by [tex]\( x - 3 \)[/tex].

To understand the transformation, recall how function transformations work:
1. Horizontal Shifts:
- A function [tex]\( g(x - a) \)[/tex] represents a horizontal shift to the right by [tex]\( a \)[/tex] units.
- A function [tex]\( g(x + a) \)[/tex] represents a horizontal shift to the left by [tex]\( a \)[/tex] units.

2. Vertical Shifts:
- A function [tex]\( g(x) + a \)[/tex] represents a vertical shift up by [tex]\( a \)[/tex] units.
- A function [tex]\( g(x) - a \)[/tex] represents a vertical shift down by [tex]\( a \)[/tex] units.

Given our function transformation:
[tex]\[ h(x) = g(x - 3) \][/tex]

This fits the horizontal shift transformation. Specifically, [tex]\( x - 3 \)[/tex] indicates a shift to the right by 3 units.

So, the correct statement describing the difference between the graph of [tex]\( h \)[/tex] and the graph of [tex]\( g \)[/tex] is:
A. The graph of [tex]\( h \)[/tex] is the graph of [tex]\( g \)[/tex] horizontally shifted right 3 units.