Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the estimated value of each expression with its position on the number line.

A. [tex]$\sqrt{90}-\sqrt{40}$[/tex]
B. [tex]$\frac{\sqrt{25}-\sqrt{42}}{\sqrt{5}-\sqrt{6}}$[/tex]
C. [tex]$2 \sqrt{27}-\sqrt{48}$[/tex]
D. [tex]$\frac{\sqrt{54}-\sqrt{24}}{\sqrt{18}-\sqrt{8}}$[/tex]



Answer :

Certainly! Let's tackle this step by step and match the correct expressions with their respective positions on the number line.

First, let's summarize the values for each of the expressions as follows:
- Expression A: [tex]\(\sqrt{90} - \sqrt{40}\)[/tex] has an approximate value of 3.16.
- Expression B: [tex]\(\frac{\sqrt{25} - \sqrt{42}}{\sqrt{5} - \sqrt{6}}\)[/tex] has an approximate value of 6.94.
- Expression C: [tex]\(2 \sqrt{27} - \sqrt{48}\)[/tex] has an approximate value of 3.46.
- Expression D: [tex]\(\frac{\sqrt{54} - \sqrt{24}}{\sqrt{18} - \sqrt{8}}\)[/tex] has an approximate value of 1.73.

Let's match each expression with its corresponding letter from the question:

1. [tex]\(\sqrt{90} - \sqrt{40}\)[/tex] corresponds to the value 3.16, which is Expression A.
2. [tex]\(\frac{\sqrt{25} - \sqrt{42}}{\sqrt{5} - \sqrt{6}}\)[/tex] corresponds to the value 6.94, which is Expression B.
3. [tex]\(2 \sqrt{27} - \sqrt{48}\)[/tex] corresponds to the value 3.46, which is Expression C.
4. [tex]\(\frac{\sqrt{54} - \sqrt{24}}{\sqrt{18} - \sqrt{8}}\)[/tex] corresponds to the value 1.73, which is Expression D.

Final matching:
- [tex]\(\sqrt{90} - \sqrt{40}\)[/tex] : A (3.16)
- [tex]\(\frac{\sqrt{25} - \sqrt{42}}{\sqrt{5} - \sqrt{6}}\)[/tex] : B (6.94)
- [tex]\(2 \sqrt{27} - \sqrt{48}\)[/tex] : C (3.46)
- [tex]\(\frac{\sqrt{54} - \sqrt{24}}{\sqrt{18} - \sqrt{8}}\)[/tex] : D (1.73)

This step-by-step matching ensures that each expression is correctly paired with its value, allowing us to accurately place them on the number line.